Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie entstehen freie Elektronen?

15.01.2010
Einen bisher unbekannten Weg, auf dem energiereiche Strahlung in Wasser langsame Elektronen freisetzen kann, haben Wissenschaftler des Max-Planck-Instituts für Plasmaphysik (IPP) in Garching/Greifswald und des Fritz-Haber-Instituts in Berlin entdeckt.

Die Ergebnisse wurden jetzt in dem renommierten Fachblatt "Nature Physics" publiziert. Freie Elektronen spielen eine große Rolle bei chemischen Prozessen. Insbesondere könnten sie für das Entstehen von Strahlenschäden in organischem Gewebe Bedeutung besitzen.

Trifft ionisierende Strahlung auf Materie, dann werden stets große Mengen langsamer Elektronen freigesetzt. Bisher nahm man an, dass diese Elektronen durch die energiereiche Strahlung aus der Elektronenhülle der getroffenen Teilchen - etwa aus einem Wasser-Molekül - herausgeschlagen werden. In ihrem Experiment haben die Berliner Wissenschaftler so genannte Wasser-Cluster, winzige Eisklümpchen, mit weicher Röntgenstrahlung aus dem Berliner Speicherring für Synchrotronstrahlung BESSY beschossen. Dabei haben sie die bekannten Elektronen wie erwartet nachgewiesen. Daneben zeigte sich jedoch ein neuer Prozess: Zwei benachbarte Wassermoleküle arbeiten zusammen, um die Ausbeute an langsamen Elektronen zu vergrößern.

Zunächst wird die Energie der Röntgenstrahlung im Material aufgenommen: Ein Wassermolekül wird ionisiert und gibt ein Elektron frei. Dieses Elektron nimmt aber nicht die gesamte Energie des aufgetroffenen Röntgenphotons mit. Ein Rest bleibt in dem zurückbleibenden Ion gespeichert und sorgt dafür, dass wenige Femtosekunden später ein weiteres Elektron freigesetzt wird. (Eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde. Einige Femtosekunden brauchen zum Beispiel die Elektronen bei einem chemischen Prozess, um sich anders anzuordnen.) Dieser Prozess ist als Autoionisation bekannt - das Molekül ionisiert sich selbst.

Die Max-Planck-Forscher haben nun entdeckt, dass zwei benachbarte Wassermoleküle bei einem solchen Autoionisationsprozess zusammenarbeiten können. Gemeinsam erreichen sie einen Zustand, der für beide energetisch günstiger ist, wenn sie jeweils beide ein Elektron freisetzen. Dazu gibt das zuerst erzeugte Molekül-Ion seine überschüssige Energie an ein zweites Molekül ab, das daraufhin ein eigenes Elektron aussendet. Dieser Energietransfer funktioniert sogar durch den leeren Raum, eine chemische Bindung der beiden Moleküle ist nicht erforderlich.

Die Entdeckung kommt nicht ganz überraschend. Schon vor mehr als zehn Jahren hatten Theoretiker der Universität Heidelberg um Lorenz Cederbaum diesen "Intermolekularen Coulomb-Zerfall" vorhergesagt. Er wurde in gefrorenen Edelgasen schon beobachtet. Um ihn jetzt auch in Wasser zweifelsfrei aufzuspüren, war eine ausgefeilte Experimentiertechnik erforderlich, bei der beide erzeugten Elektronen als Paar nachgewiesen werden.

Der Nachweis der IPP-Forscher, dass der Prozess in Wasser - also wohl auch in organischem Gewebe - möglich ist, könnte dazu beitragen, das Entstehen von Strahlenschäden aufzuklären. "In einem Organismus freigesetzte langsame Elektronen können für biologisch relevante Moleküle fatale Folgen haben," erklärt Uwe Hergenhahn von der Berliner IPP-Arbeitsgruppe am BESSY: "Erst seit wenigen Jahren ist bekannt, dass die Anlagerung solcher Elektronen organische Moleküle wie eine Schere in zwei Stücke zerteilen kann. Noch weiß man sehr wenig darüber, wie dieser und andere Prozesse auf molekularer Ebene die Entstehung von Strahlenschäden bewirken. Es ist jedoch klar, dass hier ein wichtiges Forschungsfeld liegt." Aber auch für andere Vorgänge in der Chemie sind intermolekulare Coulomb-Zerfälle von Bedeutung: Die paarweise Zusammenarbeit von einem Wasser-Molekül mit einer im Wasser gelösten Substanz könnte aufklären, wie Lösungsvorgänge auf molekularer Ebene funktionieren.

Die Ergebnisse der IPP-Forscher sind kürzlich in dem renommierten Fachblatt "Nature Physics" erschienen***. Zugleich ist dort auch ein komplementäres Experiment dokumentiert, bei dem eine Arbeitsgruppe der Universität Frankfurt intermolekulare Coulomb-Zerfälle in den kleinst-möglichen Wassern-Clustern, bestehend aus nur aus zwei Wasser-Molekülen, sehen konnte.

A hitherto unrecognized source of low energy electrons in water. Autoren: Melanie Mucke 1, Markus Braune 2, Silko Barth 1, Marko Förstel 1,3, Toralf Lischke1, Volker Ulrich 1, Tiberiu Arion 1, Uwe Becker 2, Alex Bradshaw 1,2 und Uwe Hergenhahn 1,4

(1 Max-Planck-Institut für Plasmaphysik, Garching, 2 Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, 3 Max-Planck-Institut für Kernphysik, Heidelberg, 4 Helmholtz-Zentrum Berlin)

Online-Veröffentlichung in "Nature Physics" am 10. Januar 2010
http://dx.doi.org; DOI-Nummer 10.1038/NPHYS1500

Isabella Milch | Max-Planck-Institut
Weitere Informationen:
http://www.ipp.mpg.de
http://dx.doi.org

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten