Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie entstehen freie Elektronen?

15.01.2010
Einen bisher unbekannten Weg, auf dem energiereiche Strahlung in Wasser langsame Elektronen freisetzen kann, haben Wissenschaftler des Max-Planck-Instituts für Plasmaphysik (IPP) in Garching/Greifswald und des Fritz-Haber-Instituts in Berlin entdeckt.

Die Ergebnisse wurden jetzt in dem renommierten Fachblatt "Nature Physics" publiziert. Freie Elektronen spielen eine große Rolle bei chemischen Prozessen. Insbesondere könnten sie für das Entstehen von Strahlenschäden in organischem Gewebe Bedeutung besitzen.

Trifft ionisierende Strahlung auf Materie, dann werden stets große Mengen langsamer Elektronen freigesetzt. Bisher nahm man an, dass diese Elektronen durch die energiereiche Strahlung aus der Elektronenhülle der getroffenen Teilchen - etwa aus einem Wasser-Molekül - herausgeschlagen werden. In ihrem Experiment haben die Berliner Wissenschaftler so genannte Wasser-Cluster, winzige Eisklümpchen, mit weicher Röntgenstrahlung aus dem Berliner Speicherring für Synchrotronstrahlung BESSY beschossen. Dabei haben sie die bekannten Elektronen wie erwartet nachgewiesen. Daneben zeigte sich jedoch ein neuer Prozess: Zwei benachbarte Wassermoleküle arbeiten zusammen, um die Ausbeute an langsamen Elektronen zu vergrößern.

Zunächst wird die Energie der Röntgenstrahlung im Material aufgenommen: Ein Wassermolekül wird ionisiert und gibt ein Elektron frei. Dieses Elektron nimmt aber nicht die gesamte Energie des aufgetroffenen Röntgenphotons mit. Ein Rest bleibt in dem zurückbleibenden Ion gespeichert und sorgt dafür, dass wenige Femtosekunden später ein weiteres Elektron freigesetzt wird. (Eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde. Einige Femtosekunden brauchen zum Beispiel die Elektronen bei einem chemischen Prozess, um sich anders anzuordnen.) Dieser Prozess ist als Autoionisation bekannt - das Molekül ionisiert sich selbst.

Die Max-Planck-Forscher haben nun entdeckt, dass zwei benachbarte Wassermoleküle bei einem solchen Autoionisationsprozess zusammenarbeiten können. Gemeinsam erreichen sie einen Zustand, der für beide energetisch günstiger ist, wenn sie jeweils beide ein Elektron freisetzen. Dazu gibt das zuerst erzeugte Molekül-Ion seine überschüssige Energie an ein zweites Molekül ab, das daraufhin ein eigenes Elektron aussendet. Dieser Energietransfer funktioniert sogar durch den leeren Raum, eine chemische Bindung der beiden Moleküle ist nicht erforderlich.

Die Entdeckung kommt nicht ganz überraschend. Schon vor mehr als zehn Jahren hatten Theoretiker der Universität Heidelberg um Lorenz Cederbaum diesen "Intermolekularen Coulomb-Zerfall" vorhergesagt. Er wurde in gefrorenen Edelgasen schon beobachtet. Um ihn jetzt auch in Wasser zweifelsfrei aufzuspüren, war eine ausgefeilte Experimentiertechnik erforderlich, bei der beide erzeugten Elektronen als Paar nachgewiesen werden.

Der Nachweis der IPP-Forscher, dass der Prozess in Wasser - also wohl auch in organischem Gewebe - möglich ist, könnte dazu beitragen, das Entstehen von Strahlenschäden aufzuklären. "In einem Organismus freigesetzte langsame Elektronen können für biologisch relevante Moleküle fatale Folgen haben," erklärt Uwe Hergenhahn von der Berliner IPP-Arbeitsgruppe am BESSY: "Erst seit wenigen Jahren ist bekannt, dass die Anlagerung solcher Elektronen organische Moleküle wie eine Schere in zwei Stücke zerteilen kann. Noch weiß man sehr wenig darüber, wie dieser und andere Prozesse auf molekularer Ebene die Entstehung von Strahlenschäden bewirken. Es ist jedoch klar, dass hier ein wichtiges Forschungsfeld liegt." Aber auch für andere Vorgänge in der Chemie sind intermolekulare Coulomb-Zerfälle von Bedeutung: Die paarweise Zusammenarbeit von einem Wasser-Molekül mit einer im Wasser gelösten Substanz könnte aufklären, wie Lösungsvorgänge auf molekularer Ebene funktionieren.

Die Ergebnisse der IPP-Forscher sind kürzlich in dem renommierten Fachblatt "Nature Physics" erschienen***. Zugleich ist dort auch ein komplementäres Experiment dokumentiert, bei dem eine Arbeitsgruppe der Universität Frankfurt intermolekulare Coulomb-Zerfälle in den kleinst-möglichen Wassern-Clustern, bestehend aus nur aus zwei Wasser-Molekülen, sehen konnte.

A hitherto unrecognized source of low energy electrons in water. Autoren: Melanie Mucke 1, Markus Braune 2, Silko Barth 1, Marko Förstel 1,3, Toralf Lischke1, Volker Ulrich 1, Tiberiu Arion 1, Uwe Becker 2, Alex Bradshaw 1,2 und Uwe Hergenhahn 1,4

(1 Max-Planck-Institut für Plasmaphysik, Garching, 2 Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, 3 Max-Planck-Institut für Kernphysik, Heidelberg, 4 Helmholtz-Zentrum Berlin)

Online-Veröffentlichung in "Nature Physics" am 10. Januar 2010
http://dx.doi.org; DOI-Nummer 10.1038/NPHYS1500

Isabella Milch | Max-Planck-Institut
Weitere Informationen:
http://www.ipp.mpg.de
http://dx.doi.org

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie