Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit elektronischer Schaltung teleportiert

15.08.2013
Noch können ETH-Forschende keine Gegenstände oder Personen aus Fleisch und Blut durch das All «beamen», wie das in Science-Fiction-Filmen gezeigt wird. Ihnen gelang es jedoch, Informationen von A nach B zu teleportieren – zum ersten Mal auf einem Chip, ähnlich einem Computerchip.

Physikern der ETH Zürich ist es erstmals gelungen, eine Information in einem sogenannten Festkörpersystem zu teleportieren. Dies gelang den Forschern auf einem Chip. Er unterscheidet sich von einem herkömmlichen Computerchip dadurch, dass die Informationen darauf nicht nach den Gesetzen der klassischen Physik, sondern nach jenen der Quantenphysik gespeichert und verarbeitet werden.

In einer in der jüngsten Ausgabe der Fachzeitschrift «Nature» publizierten Studie gelang es den Forschenden, Information über sechs Millimeter zu teleportieren, von einer Ecke des Chips in die gegenüberliegende Ecke. Dies nota bene ohne dass bei der Informationsübertragung physikalische Teilchen den Weg von der Sender-Ecke in die Empfänger-Ecke zurückgelegt hätten.

«Bei der gewöhnlichen Telekommunikation wird die Information über elektromagnetische Impulse übertragen. Beispielsweise transportiert man im Mobilfunk gepulste Radiowellen und in Glasfaserverbindungen gepulste Lichtwellen», erklärt Andreas Wallraff, Professor am Laboratorium für Festkörperphysik und Leiter der Studie.

Bei der Quantenteleportation hingegen transportiere man nicht den Informationsträger selbst, sondern ausschliesslich die Information. Dies, indem man quantenmechanische Eigenschaften des Systems nutze, insbesondere die Verschränkung von Sende- und Empfängereinheit. Damit ist eine für Nicht-Physiker «magisch» anmutende Verbindung gemeint, die die Gesetze der Quantenphysik nutzt.

«Wie beim Beamen»
Zur Vorbereitung der Quantenteleportation bringt man Sende- und Empfängereinheit in einen verschränkten Zustand. Anschliessend können die beiden Einheiten physikalisch voneinander getrennt werden, denn der verschränkte Zustand bleibt erhalten. Beim Experiment programmieren die Physiker in der Sendeeinheit eine quantenmechanische Information. Weil die beiden Einheiten miteinander verschränkt sind, kann man diese Information auch in der Empfängereinheit ablesen. «Quantenteleportation ist vergleichbar mit dem Beamen in der Science-Fiction-Serie Star Trek», sagt Wallraff. «Die Information reist nicht von Punkt A zu Punkt B. Vielmehr erscheint sie an Punkt B und verschwindet an Punkt A, wenn man sie an Punkt B abliest.»
Hohe Übertragungsrate
Die Distanz von sechs Millimetern, über die die ETH-Forscher teleportierten, mag im Vergleich mit anderen Teleportationsexperimenten kurz erscheinen. Vor einem Jahr ist es beispielsweise österreichischen Wissenschaftlern gelungen, eine Information über mehr als hundert Kilometer zwischen den beiden Kanarischen Inseln La Palma und Teneriffa zu teleportieren. Dieser und ähnliche Versuche waren jedoch grundlegend anders, da es sich dabei um optische Systeme mit sichtbarem Licht handelte. Den ETH-Forschenden ist es hingegen zum ersten Mal gelungen, Informationen in einem System mit supraleitenden elektronischen Schaltungen zu teleportieren. «Das ist interessant, weil solche Schaltungen wichtige Elemente für den Bau von zukünftigen Quantencomputern sind», sagt Wallraff. Ein weiterer Vorteil des Systems der ETH-Wissenschaftler: Es ist extrem schnell und deutlich schneller als die meisten bisherigen Teleportationssysteme. Pro Sekunde lassen sich damit etwa 10‘000 Quantenbits übertragen.
«Wichtige Zukunftstechnologie»
Als nächstes möchten die Forschenden mit ihrem System den Abstand zwischen Sender und Empfänger vergrössern. Zunächst möchten sie versuchen, Information von einem Chip auf einen anderen zu teleportieren. Und langfristig geht es darum zu erforschen, ob man mit elektronischen Schaltungen auch über grössere Distanzen Quantenkommunikation betreiben kann, so wie das jetzt mit optischen Systemen gemacht wird.

«Teleportation ist eine wichtige Zukunftstechnologie auf dem Gebiet der Quan-teninformationsverarbeitung», sagt Wallraff. Damit lasse sich beispielsweise Information auf einem Quantenchip oder in einem zukünftigen Quantenprozessor von einem Punkt zu einem anderen transportieren. Gegenüber den heutigen Informations- und Kommunikationstechnologien, die auf der klassischen Physik beruhen, hat quantenphysikalische Information den Vorteil, dass die Informationsdichte viel höher ist: In Quantenbits lässt sich mehr Information speichern und effizienter verarbeiten als in der gleichen Anzahl klassischer Bits.

Original: Steffen L, Salathe Y, Oppliger M, Kurpiers P, Baur M, Lang C, Eichler C, Puebla-Hellmann G, Fe-dorov A, Wallraff A: Deterministic quantum teleportation with feed-forward in a solid state system. Nature, 2013, 500: 319-322, doi: 10.1038/nature12422.

Weitere Informationen:
ETH Zürich
Prof. Andreas Wallraff
Laboratorium für Festkörperphysik
andreas.wallraff@phys.ethz.ch

Franziska Schmid | ETH Zürich
Weitere Informationen:
http://www.ethz.ch

Weitere Berichte zu: Computerchip ETH Physik Quantenbit Quantenphysik Quantenteleportation Schaltung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie