Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronische Quanteneffekte in Strukturen aus neuen Materialien, die nur wenige Nanometer groß sind

12.03.2013
DFG-Forschergruppe für drei Jahre verlängert

Elektronische Quanteneffekte in Strukturen aus neuen Materialien, die nur wenige Nanometer groß sind, sind Gegenstand der DFG-Forschergruppe FOR1162. Die Deutsche Forschungsgemeinschaft hat nun beschlossen, die Gruppe weitere drei Jahre mit drei Millionen Euro zu unterstützen.


Schematisches Bild eines "künstlichen" Festkörpers, der aus zwei verschiedenen Metalloxiden aufgebaut ist. Obwohl beide Oxide elektrische Isolatoren sind, entsteht an ihrer Grenzfläche ein hochleitfähiges zweidimensionales Elektronensystem (grün), das bei tiefen Temperaturen supraleitend, aber auch magnetisch werden kann. Die Untersuchungen solcher Quantenphänomene stehen im Mittelpunkt der DFG-Forschergruppe FOR1162
(Grafik: Götz Berner)

Immer schneller, immer kleiner und immer mehr Speicherplatz: Moderne Computer sind heute zu Rechen- und Speicherleistungen fähig, für die noch vor wenigen Jahrzehnten ganze Fabrikhallen voller Rechnerschränke notwendig gewesen wären – der Miniaturisierung sei Dank. Dieser Prozess wird jedoch, wenn er in diesem Tempo fortschreitet, in der auf Silizium basierenden Mikroelektronik in wenigen Jahren an grundlegende physikalische Grenzen stoßen. Dann sind neue Konzepte und Materialien gefragt.

Drei Millionen Euro für die Forschung

Die Effekte, die in der Nanowelt auftreten, verstehen und für die technische Weiterentwicklung nutzbar machen: Daran arbeiten Wissenschaftler in der DFG-Forschergruppe FOR1162: Electron Correlation-Induced Phenomena in Surfaces and Interfaces with Tunable Interactions.

2009 hat die Gruppe an der Fakultät für Physik und Astronomie der Universität Würzburg die Arbeit aufgenommen; im vergangenen Jahr hat die DFG die bisher geleistete Arbeit positiv begutachtet. Jetzt kam der neue Förderbescheid: In den kommenden drei Jahren stellt die DFG der Forschergruppe insgesamt drei Millionen Euro zur Verfügung. Das Geld soll insbesondere dem wissenschaftlichen Nachwuchs und der internationalen Vernetzung der Würzburger Aktivitäten zugutekommen.

Quanteneffekte nutzbar machen

„Wenn elektronische Bauelemente immer kleiner werden, spielt die elektrische Abstoßung zwischen den Leitungselektronen eine immer wichtigere Rolle für die Funktionalität dieser Elemente“, erklärt Professor Ralph Claessen, Sprecher der Forschergruppe und Inhaber des Lehrstuhls für Experimentelle Physik 4 an der Universität Würzburg. Dann nämlich treten Quanteneffekte auf, die umso ausgeprägter sind, je stärker die Bewegungsfreiheit der Elektronen eingeschränkt wird.

Und eine solche Einschränkung ergibt sich zwangsläufig, wenn die Strukturen nur noch wenige Nanometer groß sind und sich über zwei oder sogar nur noch eine Raumdimensionen erstrecken. In der konventionellen Halbleitertechnologie sorgen diese Effekte für unerwünschte Störungen; in komplexeren Festkörpermaterialien lassen sie sich möglicherweise für neuartige Anwendungen nutzen, hoffen die Physiker.

Atomare Kontrolle und künstliche Materialien

„Die Forschergruppe beschäftigt sich mit maßgeschneiderten ‚künstlichen‘ Festkörpern“, erklärt Claessen. Diese sind nur wenige Millionstel Millimeter groß und aus unterschiedlichen Materialien aufgebaut. „Mithilfe modernster Herstellungsmethoden können wir ihren Aufbau bis hin zu atomaren Größenordnungen präzise kontrollieren“, so der Wissenschaftler.

Zwei Ziele verfolgt die Forschergruppe: Zum einen will sie die in solchen Systemen auftretenden Quanteneffekte grundlegend verstehen. Zum anderen arbeitet sie daran, die sich aus diesen Quanteneffekten ergebenden elektronischen und magnetischen Funktionalitäten gezielt zu beeinflussen und nutzbar zu machen. Beispiele für Anwendungen sind neuartige Transistoren oder Solarzellen, elektrisch beschreibbare magnetische Speicherbits, oder schaltbare Supraleiter.

Die Forschergruppe kann sich für ihre Aktivitäten auf ein breites Spektrum experimenteller und theoretischer Methoden stützen, die in insgesamt neun eng kooperierenden Teilprojekten eingesetzt werden. Dabei spielt die Anwendung von Röntgenstrahlung für modernste Spektroskopieverfahren eine zentrale Rolle – eine Technik, die in Würzburg eine lange Tradition besitzt.

Robert Emmerich | Uni Würzburg
Weitere Informationen:
http://www.physik.uni-wuerzburg.de/institute_einrichtungen/physikalisches_institut/dfg_forschergruppe_for1162/for_1162

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

nachricht Innovative High Power LED Light Engine für den UV Bereich
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie