Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronische Quanteneffekte in Strukturen aus neuen Materialien, die nur wenige Nanometer groß sind

12.03.2013
DFG-Forschergruppe für drei Jahre verlängert

Elektronische Quanteneffekte in Strukturen aus neuen Materialien, die nur wenige Nanometer groß sind, sind Gegenstand der DFG-Forschergruppe FOR1162. Die Deutsche Forschungsgemeinschaft hat nun beschlossen, die Gruppe weitere drei Jahre mit drei Millionen Euro zu unterstützen.


Schematisches Bild eines "künstlichen" Festkörpers, der aus zwei verschiedenen Metalloxiden aufgebaut ist. Obwohl beide Oxide elektrische Isolatoren sind, entsteht an ihrer Grenzfläche ein hochleitfähiges zweidimensionales Elektronensystem (grün), das bei tiefen Temperaturen supraleitend, aber auch magnetisch werden kann. Die Untersuchungen solcher Quantenphänomene stehen im Mittelpunkt der DFG-Forschergruppe FOR1162
(Grafik: Götz Berner)

Immer schneller, immer kleiner und immer mehr Speicherplatz: Moderne Computer sind heute zu Rechen- und Speicherleistungen fähig, für die noch vor wenigen Jahrzehnten ganze Fabrikhallen voller Rechnerschränke notwendig gewesen wären – der Miniaturisierung sei Dank. Dieser Prozess wird jedoch, wenn er in diesem Tempo fortschreitet, in der auf Silizium basierenden Mikroelektronik in wenigen Jahren an grundlegende physikalische Grenzen stoßen. Dann sind neue Konzepte und Materialien gefragt.

Drei Millionen Euro für die Forschung

Die Effekte, die in der Nanowelt auftreten, verstehen und für die technische Weiterentwicklung nutzbar machen: Daran arbeiten Wissenschaftler in der DFG-Forschergruppe FOR1162: Electron Correlation-Induced Phenomena in Surfaces and Interfaces with Tunable Interactions.

2009 hat die Gruppe an der Fakultät für Physik und Astronomie der Universität Würzburg die Arbeit aufgenommen; im vergangenen Jahr hat die DFG die bisher geleistete Arbeit positiv begutachtet. Jetzt kam der neue Förderbescheid: In den kommenden drei Jahren stellt die DFG der Forschergruppe insgesamt drei Millionen Euro zur Verfügung. Das Geld soll insbesondere dem wissenschaftlichen Nachwuchs und der internationalen Vernetzung der Würzburger Aktivitäten zugutekommen.

Quanteneffekte nutzbar machen

„Wenn elektronische Bauelemente immer kleiner werden, spielt die elektrische Abstoßung zwischen den Leitungselektronen eine immer wichtigere Rolle für die Funktionalität dieser Elemente“, erklärt Professor Ralph Claessen, Sprecher der Forschergruppe und Inhaber des Lehrstuhls für Experimentelle Physik 4 an der Universität Würzburg. Dann nämlich treten Quanteneffekte auf, die umso ausgeprägter sind, je stärker die Bewegungsfreiheit der Elektronen eingeschränkt wird.

Und eine solche Einschränkung ergibt sich zwangsläufig, wenn die Strukturen nur noch wenige Nanometer groß sind und sich über zwei oder sogar nur noch eine Raumdimensionen erstrecken. In der konventionellen Halbleitertechnologie sorgen diese Effekte für unerwünschte Störungen; in komplexeren Festkörpermaterialien lassen sie sich möglicherweise für neuartige Anwendungen nutzen, hoffen die Physiker.

Atomare Kontrolle und künstliche Materialien

„Die Forschergruppe beschäftigt sich mit maßgeschneiderten ‚künstlichen‘ Festkörpern“, erklärt Claessen. Diese sind nur wenige Millionstel Millimeter groß und aus unterschiedlichen Materialien aufgebaut. „Mithilfe modernster Herstellungsmethoden können wir ihren Aufbau bis hin zu atomaren Größenordnungen präzise kontrollieren“, so der Wissenschaftler.

Zwei Ziele verfolgt die Forschergruppe: Zum einen will sie die in solchen Systemen auftretenden Quanteneffekte grundlegend verstehen. Zum anderen arbeitet sie daran, die sich aus diesen Quanteneffekten ergebenden elektronischen und magnetischen Funktionalitäten gezielt zu beeinflussen und nutzbar zu machen. Beispiele für Anwendungen sind neuartige Transistoren oder Solarzellen, elektrisch beschreibbare magnetische Speicherbits, oder schaltbare Supraleiter.

Die Forschergruppe kann sich für ihre Aktivitäten auf ein breites Spektrum experimenteller und theoretischer Methoden stützen, die in insgesamt neun eng kooperierenden Teilprojekten eingesetzt werden. Dabei spielt die Anwendung von Röntgenstrahlung für modernste Spektroskopieverfahren eine zentrale Rolle – eine Technik, die in Würzburg eine lange Tradition besitzt.

Robert Emmerich | Uni Würzburg
Weitere Informationen:
http://www.physik.uni-wuerzburg.de/institute_einrichtungen/physikalisches_institut/dfg_forschergruppe_for1162/for_1162

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
13.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften