Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was Elektronen zum Zittern bringt: Bewegungen in Halbleitern erzeugen Strahlung mit Rekordbandbreite

20.01.2014
Moderne Hochgeschwindigkeitselektronik basiert auf winzigen Halbleiter-Strukturen, in denen Elektronen mit Hilfe von elektrischen Feldern auf immer höhere Geschwindigkeiten beschleunigt werden.

Bald schon dürften Feldstärken erreicht werden, die zu einer neuen Klasse von Quantenphänomenen führen. Physiker der Universitäten Regensburg, Marburg und Paderborn haben nun nachgewiesen, dass sich Elektronen unter diesen Bedingungen nicht mehr monoton in eine Richtung bewegen, sondern extrem schnelle Oszillationen ausführen, die Licht über einen superbreiten Spektralbereich ausstrahlen. Die Ergebnisse wurden in der Fachzeitschrift „Nature Photonics“ veröffentlicht (DOI: 10.1038/nphoton.2013.349).


Schematische Darstellung oszillierender Elektronen, die hochfrequente elektro-magnetische Strahlung aussenden.

Bildnachweis: Universität Regensburg – Zur ausschließlichen Verwendung im Rahmen der Berichterstattung zu dieser Pressemitteilung.

Vor 85 Jahren beschrieb Felix Bloch, einer der Väter der modernen Festkörperphysik, die Bewegungen von Elektronen in einem Festkörper mit quantenmechanischen Wellen. Die Bewegungen sind dabei mit den Bewegungen von Wellen auf dem Wasser vergleichbar: Treffen sie auf ein Hindernis, etwa einen Stein, dann werden sie gestreut und auf der Wasseroberfläche bildet sich ein Muster kleiner Wellen aus.

In einem Festkörper führt die enorme Anzahl periodisch angeordneter Atome zu einem hochkomplexen Streumuster der Elektronen und zu einer überraschenden Vorhersage: In einem starken elektrischen Feld sollten sich Elektronen demnach nicht – wie intuitiv erwartet – gleichförmig in eine Richtung bewegen, sondern beginnen zu oszillieren. Dieses merkwürdige Verhalten konnte aber bislang nur in künstlichen Modellsystemen beobachtet werden, weil die Wellennatur der Elektronen durch ihre Wechselwirkung untereinander sowie mit dem Atomgitter eines natürlichen Festkörpers schnell „verwischt“ wird.

Einem Team um Prof. Dr. Rupert Huber vom Institut für Experimentelle und Angewandte Physik der Universität Regensburg ist es nun in einem bahnbrechenden Experiment gelungen, elektrische Felder in der Größenordnung von 10 Milliarden Volt pro Meter mit einer Präzision von billiardstel Sekunden an Halbleiter anzulegen und die Oszillation der Elektronen zu beobachten, bevor sie verwischt.

Die Forscher nutzen dazu eine erst vor kurzem in Betrieb genommene Hochfeld-Terahertzquelle an der Universität Regensburg. Sie kann ultrakurze Lichtblitze im infraroten Spektralbereich mit Rekordintensitäten und präzise kontrollierbarem Feldverlauf erzeugen. Der Trick ist dabei, das schwingende elektrische Feld eines solchen Lichtblitzes als kurzzeitige Vorspannung zu verwenden. Mit einer extrem schnellen Zeitlupenkamera konnten die Wissenschaftler zudem zeigen, dass die oszillierenden Elektronen elektromagnetische Strahlung vom Mikrowellen- bis zum Ultraviolett-Bereich ausstrahlen.

Zur Erklärung dieser Messdaten entwickelten die Arbeitsgruppen von Prof. Dr. Stephan W. Koch und Prof. Dr. Mackillo Kira an der Universität Marburg gemeinsam mit Prof. Dr. Torsten Meier von der Universität Paderborn ein quantenmechanisches Modell, das die komplexen Vorgänge im Halbleiter nachbildet und die experimentellen Daten eindeutig als dynamische Bloch-Oszillationen identifiziert.

Die Ergebnisse vermitteln einen spektakulären Einblick in eine Quantenwelt, die für künftige Generationen von Halbleiterbauelementen entscheidend werden dürfte. Was vielleicht noch wichtiger ist: Sie zeigen, dass sich elektrische Ströme auf Zeitskalen einzelner Lichtschwingungen kontrollieren lassen. Die Elektronik der Zukunft könnte also auch bei optischen Taktraten funktionieren. Nicht zuletzt emittieren Bloch-Oszillationen ultrakurze Lichtblitze im infraroten Spektralbereich in einer Rekordbandbreite. Diese Lichtquelle dürfte demnach ein wertvolles Forschungsinstrument für die Ultrakurzzeitphysik werden.

Titel der Originalpublikation:
O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch und R. Huber, „Sub-cycle Control of Terahertz High-Harmonic Generation by Dynamical Bloch Oscillations“, Nature Photonics (2014)
Die Publikation im Internet unter:
http://dx.doi.org/10.1038/nphoton.2013.349
Ansprechpartner für Medienvertreter:
Prof. Dr. Rupert Huber
Universität Regensburg
Institut für Experimentelle und Angewandte Physik
Tel.: 0941 943-2070
Rupert.Huber@physik.uni-regensburg.de
und
Prof. Dr. Stephan W. Koch
Philipps-Universität Marburg
Fachbereich Physik
Tel.: 06421 28-21336
Stephan.W.Koch@physik.uni-marburg.de

Alexander Schlaak | idw
Weitere Informationen:
http://www.uni-regensburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie