Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einzelne Lichtquanten führen logische Operationen aus

04.05.2016

MPQ-Wissenschaftler nehmen eine entscheidende Hürde auf dem Weg zu einem logischen Quantengatter für Photonen

Weltweit arbeiten Wissenschaftler an Konzepten für zukünftige Quantencomputer und an deren experimenteller Realisierung. Der typische „Standard-Quantencomputer“ soll nach gängigen Vorstellungen auf einem System von vernetzten Quantenteilchen basieren, die der Speicherung, Kodierung und Verarbeitung von Quanteninformation dienen.


Eine Wolke von kalten Atomen wird mit rotem Signallicht und blauem Kopplungslicht beleuchtet. Die Lichtpulse werden auf dichroitischen Spiegeln (DM) überlagert. Mit Wellenplatten (WP), einem polarisierenden Strahlteiler (PBS), und Avalanche-Photodiode (APD) wird die Polarisation des transmittierten Signallichts bestimmt.

MPQ, Abteilung Quantendynamik

Zentrales Bauelement wäre auch hier, analog zu einem klassischen Computer, ein Quantengatter, das Eingangssignalen eindeutig bestimmte Ausgangssignale zuordnet. Ein Team um Dr. Stephan Dürr aus der Abteilung Quantendynamik von Prof. Gerhard Rempe am Max-Planck-Institut für Quantenoptik hat jetzt in einem Experiment gezeigt, wie sich eine wichtige Gatterfunktion – die Vertauschung der binären Bit-Werte „0“ und „1“ – mit einzelnen Lichtquanten realisieren lässt.

Dabei wird zunächst ein Lichtpuls aus einem einzigen Photon in einer ultrakalten Wolke aus rund 100 000 Rubidiumatomen als Anregung gespeichert. Dies bewirkt, dass ein nachfolgender Lichtpuls beim Durchlaufen der atomaren Wolke eine Phasenverschiebung von 180 Grad erhält (Science Advances, 29. April 2016).

„Photonen eignen sich hervorragend für die Übertragung von Quanteninformation, weil sie mit ihrer Umgebung kaum in Wechselwirkung treten und daher leicht über große Entfernungen übertragen werden können“, erklärt Dr. Stephan Dürr, der Leiter des Projektes. „Aus diesem Grund arbeiten wir an der Entwicklung von Photon-Photon-Quantengattern, bei denen einzelne Lichtpulse einlaufende photonische Qubits determiniert verändern können.“

Bei der Verarbeitung von Daten haben logische Gatter die Aufgabe, eine Wahrheitstabelle umzusetzen, die jeder Bit-Kombination eines Eingangssignals eindeutig Ausgangssignale zuordnet. Dabei kann z.B. der Wert 0 in 1 umgewandelt werden bzw. umgekehrt. Bei einem Photon-Photon-Quantengatter entspricht das dem Vorgang, dass ein einzelnes Photon ein zweites einzelnes Photon gezielt manipuliert. Diese Wechselwirkung kann nur durch Materie vermittelt werden. Allerdings war es bisher nicht gelungen, ein physikalisches System zu finden, in dem diese Wechselwirkung hinreichend stark ist.

In dem vorliegenden Experiment wird eine Wolke aus rund 100 000 Rubidiumatomen auf 0,5 Mikrokelvin gekühlt (Null Kelvin entspricht dem absoluten Nullpunkt der Temperaturskala) und in einer aus mehreren Lichtfeldern gebildeten Dipolfalle gefangen gehalten. Diese atomare Wolke wird mit drei schnell aufeinander folgenden Lichtpulsen bestrahlt. Der erste sogenannte Kontroll-Puls entscheidet darüber, ob der zweite Target-Puls beim Durchgang durch das atomare Gas signifikant verändert wird, d.h., ob die Gatterfunktion ein- oder ausgeschaltet ist. Mit einem dritten Puls wird eine gegebenenfalls gespeicherte Anregung wieder ausgelesen.

Der Trick dabei ist, dass die Lichtpulse zwei Komponenten enthalten. Zum einen das extrem schwache rote Signallicht, dessen Wellenlänge von 780 nm nah-resonant zu einem bestimmten atomaren Übergang ist. Ein Lichtpuls ist dabei so schwach, dass er im Mittel etwa ein Photon enthält. Ohne weitere Maßnahmen würde er die Wolke durchlaufen und dabei eine gewisse Phasenverschiebung erfahren. Erst die Zumischung von relativ intensivem blauen „Kopplungslicht“ mit einer Wellenlänge von 480 nm macht es möglich, das Photon aus dem Signalpuls kontrolliert und reversibel abzuspeichern. Dabei wird ein Atom in der Wolke in einen hochangeregten Rydberg-Zustand überführt, bei dem ein Elektron extrem weit vom Atomkern entfernt ist.

Anschließend werden die Atome mit einem Target-Puls beleuchtet, der ebenfalls sowohl Signallicht als auch Kopplungslicht enthält. Da die Rydberg-Anregung mit anderen Atomen in der Wolke eine weitreichende van-der-Waals-Wechselwirkung hat, verschieben sich gewisse atomare Energieniveaus in der Wolke und sind somit in Bezug auf die Energie des Target-Pulses stärker verstimmt, als wenn vorher kein Kontrollpuls abgespeichert worden wäre.

Aufgrund dieser Verstimmung erfährt der Target-Puls beim Durchgang durch die Atomwolke eine Phasenverschiebung, die sich um 180 Grad von der Phasenverschiebung ohne vorheriges Abspeichern eines Kontrollpulses unterscheidet. „Diese durch die van-der-Waals-Wechselwirkung erzeugte zusätzliche Phasenverschiebung ist der springende Punkt. Denn damit können Quantenzustände generiert werden, die zueinander orthogonal sind, was einem Übergang eines Bit-Wertes von 0 nach 1 entspricht“, führt Dr. Dürr aus. Anschließend wird durch erneute Beleuchtung der Atomwolke, diesmal nur mit Kopplungslicht, das ursprünglich abgespeicherte Signalphoton wieder ausgelesen.

In einer Reihe von Messungen bestimmten die Wissenschaftler mit Hilfe von Wellenplatten und einem polarisierenden Strahlteiler die Polarisation der beiden roten Signalphotonen nach Durchlaufen der atomaren Wolke. Damit wiesen sie nach, dass der Lichtpuls eine zusätzliche Phasenverschiebung von 180 Grad erhalten hatte, wenn der Signallaser während des Kontrollpulses eingeschaltet war. Der ganze Zyklus – vom Speichern des Kontrollpulses über die Propagation des Target-Pulses bis zum Auslesen des Kontrollpulses – dauert dabei insgesamt nur wenige Mikrosekunden.

„Wir konnten zeigen, dass wir mit Hilfe nur eines Kontrollphotons die Polarisationsebene des photonischen Qubits im Target-Puls drehen können“, erläutert Dr. Dürr. „Dies ist eine wichtige Voraussetzung für die Realisierung von Quantengattern. Aber Quantengatter müssen darüber hinaus die Möglichkeit bieten, aus zwei getrennten Anfangszuständen einen verschränkten Endzustand zu erzeugen. Um das zu erreichen, haben wir weiterführende Experimente geplant.“ Olivia Meyer-Streng


Originalveröffentlichung:

Daniel Tiarks, Steffen Schmidt, Gerhard Rempe, Stephan Dürr
Optical Pi Phase Shift Created with a Single-Photon Pulse
Science Advances, 29. April 2016

Kontakt:

Dr. Stephan Dürr
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 291
E-Mail: stefan.duerr@mpq.mpg.de

Prof. Dr. Gerhard Rempe
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 701
E-Mail: gerhard.rempe@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit