Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einfach über die Distanz verschränkt

19.03.2013
Mit Hilfe eines einzelnen Lichtteilchens haben Innsbrucker Physiker um Lukas Slodièka und Markus Hennrich erstmals zwei räumlich von einander getrennte Atome verschränkt. Diese Art der Verschränkung von Quantenobjekten ist wesentlich effizienter als bisherige Verfahren und könnte in Zukunft in großen Quantennetzwerken eingesetzt werden.

Das Team vom Institut für Experimentalphysik der Universität Innsbruck setzt erstmals einen Vorschlag von Theoretikern um Carlos Cabrillo und Peter Zoller aus dem Jahr 1999 um. Dabei werden zwei räumlich von einander getrennte Atome durch die Emission und Messung eines einzelnen Photons (Lichtteilchens) miteinander verschränkt.


Vom ersten Atom emittierte Photonen werden direkt in einen Lichtwellenleiter geleitet. Photonen des zweiten Atoms werden über einen entfernt liegenden Spiegel in den gleichen Lichtwellenleiter geleitet.
Grafik: Lukas Slodièka

Die zwei Barium-Atome werden in einer Ionenfalle gefangen, mit Hilfe von Lasern stark abgekühlt und angeregt. Wie die Physiker die räumliche Distanz zwischen den beiden in der Ionenfalle direkt nebeneinander liegenden Atomen simulieren, erklärt Doktorand Lukas Slodièka: „Vom ersten Atom emittierte Photonen werden direkt in einen Lichtwellenleiter geleitet. Photonen des zweiten Atoms leiten wir über einen entfernt liegenden Spiegel in den gleichen Lichtwellenleiter und stellen so virtuell eine Distanz von einem Meter zwischen den Quantenteilchen her.“ Gleichzeitig garantiert dieser Ansatz ein wesentliches Merkmal dieses neuen Experiments: „Kann der Detektor am Ende des Lichtwellenleiters nicht mehr unterscheiden von welchem Atom das ausgesandte Photon stammt, dann sind die Quantenzustände der beiden Atome miteinander verschränkt“, sagt Slodièka.

Hohe Genauigkeit und Effizienz

Die Experimentalphysiker aus dem Team von Rainer Blatt müssen dabei nanometergenau arbeiten, um stabile Messungen zu gewährleisten. „Wenn diese Bedingung erfüllt ist, erreichen wir mit diesem experimentellen Ansatz eine sehr hohe Verschränkungsrate“, sagt Markus Hennrich. In bisherigen Experimenten wurde mit zwei Atomen gearbeitet, die je ein Photon zu den Detektoren senden müssen. „Bis zur Detektion von zwei Photonen muss ungefähr eine Million mal gemessen werden“, erzählt der gebürtige Slowake Lukas Slodièka, der seit 2008 in Innsbruck forscht. „Bei der neuen Methode genügt es ein einzelnes Lichtteilchen zu detektieren, so dass wir ein etwa alle 1000 Messungen ein einen verschränkten Zustand der beiden Atome erzeugen.“ Das ist ein enormer Fortschritt und für die praktische Nutzung von großer Bedeutung.

Vielfältig einsetzbar

„Wir können also die inneren Zustände zweier Atome über ein einzelnes Photon gezielt und mit hoher Effizienz verschränken“, sagt Markus Hennrich. „Gleichzeitig lassen sich mit den einzelnen Atomen auch Quantenoperationen durchführen.“ Das eröffnet den Weg für Anwendungen in großen Quantennetzwerken. „So könnten zum Beispiel zwei Quantencomputer auf diese Weise über Lichtwellenleiter miteinander verbunden werden“, schlägt Slodièka vor. Denn miteinander verschränkte Quantenobjekte verfügen immer über die gleichen physikalischen Eigenschaften. Darauf basieren viele Vorschläge für zukünftige Quantentechnologien, zum Beispiel für die Kommunikation, Kryptografie oder die Informationsverarbeitung.

Diese Ergebnisse wurden vor kurzem im Fachjournal Physical Review Letters veröffentlicht und unter anderem vom österreichischen Wissenschaftsfonds FWF, der EU und der Tiroler Industrie unterstützt.

Publikation: Atom-Atom Entanglement by Single-Photon Detection. L. Slodièka, G. Hétet, N. Röck, P. Schindler, M. Hennrich, and R. Blatt. Phys. Rev. Lett. 110, 083603 (2013)

DOI: 10.1103/PhysRevLett.110.083603 (http://dx.doi.org/10.1103/PhysRevLett.110.083603)

Rückfragehinweis:
Lukas Slodièka
Institut für Experimentalphysik
Universität Innsbruck
Tel.: +43 512 507- 52472
E-Mail: lukas.slodicka@uibk.ac.at
Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Tel.: +43 512 507-32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften