Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Bremse für Röntgenstrahlen

19.05.2015

Nukleare Quantenoptik kontrolliert und verlangsamt Röntgenlicht.

Physiker des Heidelberger MPI für Kernphysik haben in Kooperation mit dem Deutschen Elektronen-Synchrotron DESY und der Universität Jena erstmals zwei grundlegende Effekte der Quantenoptik mit Atomkernen für Röntgenlicht demonstriert.


Abb. 1: (a) Strahlengang des resonant (rot) und nicht-resonanten Röntgenlichts durch die Probe mit einer dünnen Eisenschicht. (b) Gemessene Linienprofile für verschiedene Eintrittswinkel θ.

MPI für Kernphysik


Abb. 2: (a) Strahlengang durch das Polarimeter. (b) Absorptionslinie erzeugt echoartige Zeitstruktur. (c) Zeitverzögerung τ des resonant gestreuten Lichts. (d) τ als Funktion der Dopplerverstimmung.

MPI für Kernphysik

Durch resonante Streuung an einer Dünnschicht-Eisenprobe konnten sie Welleneigenschaften von Lichtpulsen im Röntgenbereich gezielt kontrollieren und diese gegenüber der Lichtgeschwindigkeit um einen Faktor 10000 verlangsamen [Zwei Beiträge in Physical Review Letters, 18. Mai 2015].

Die Kontrolle der Wechselwirkung von Licht und Materie beflügelt seit Jahrhunderten die Aktivitäten von Naturwissenschaftlern aller Disziplinen. Ein enormer Durchbruch war dabei die Erfindung des Lasers vor über 50 Jahren, der es heutzutage erlaubt, die Wechselwirkung von Licht und Materie auf atomarer Ebene präzise zu kontrollieren.

Dies ist das Gebiet der Quantenoptik, die hauptsächlich im sichtbaren und infraroten Bereich angewendet wird. Inzwischen gibt es mit Synchrotrons und Freie-Elektronen-Lasern äußerst leistungsfähige Strahlungsquellen für Röntgenstrahlung mit Laserqualität. Dies erweitert das Gebiet der Quantenoptik von der Wechselwirkung mit der Atomhülle auf Strahlungsübergänge in Atomkernen.

Physiker des Heidelberger Max-Planck-Instituts für Kernphysik (MPIK) haben in Zusammenarbeit mit Gruppen vom Deutschen Elektronen-Synchrotron DESY und der Universität Jena am Synchrotron PETRA III des DESY in Hamburg und an der European Synchrotron Radiation Facility (ESRF) in Grenoble in zwei neuen Experimenten nukleare Quantenoptik an Eisenkernen demonstriert. Im ersten Experiment diente das Röntgenlichts als Werkzeug, um nach der Wechselwirkung präzise Informationen über die untersuchten Eisenkerne zu erlangen.

Im zweiten Experiment waren die Rollen vertauscht, und die Eisenkerne wurden verwendet, um die Ausbreitungsgeschwindigleit von Röntgenpulsen kontrolliert abzubremsen, was vielfältige Anwendungen erschließt. Die konzeptionelle Federführung und die theoretische Modellierung lag dabei bei der der Gruppe von Jörg Evers in der Abteilung für theoretische Quantendynamik des MPIK, während die experimentelle Vorbereitung und Durchführung von der Gruppe um Ralf Röhlsberger am DESY koordiniert wurde.

Kernstück der Experimente ist eine am DESY hergestellte Dünnschicht-Probe aus Eisenatomen, eingebettet zwischen Röntgenstrahlung reflektierenden Schichten. Diese wird im flachen Winkel mit Röntgenlicht bestrahlt und das reflektierte Licht gemessen, wobei im gewählten Frequenzbereich die Eisenkerne resonant wechselwirken. Im ersten Experiment, durchgeführt am Synchrotron PETRA III bei DESY, diente die Probe als sogenanntes Röntgen-Interferometer: Die reflektierte Strahlung enthält zum einen Beiträge, die durch die resonante Wechselwirkung mit den Eisenkernen verzögert wurden. Zum anderen enthält sie nicht-resonante Beiträge, die nicht an den Kernen gestreut wurden.

Die Verzögerung durch die Eisenkerne führt zu einer Verschiebung der Wellenfronten der beiden Beiträge, welche in Abb. 1a durch zwei mögliche Strahlengänge dargestellt ist. Die resonante Streuung (rot) erfolgt in einem schmalen Frequenzband, während die übrige reflektierte Strahlung (blau) breitbandig ist. Durch Überlagerung (Interferenz) dieser beiden Anteile ergibt sich ein sogenanntes Fano-Profil, dessen asymmetrische Linienform von der Verzögerung durch die Eisenkerne abhängt. Diese kann im Experiment auf einfache Weise über den Reflexionswinkel kontrolliert werden (Abb. 1b).

Die Theorie der Fano-Interferenz lässt sich auf viele verschiedene Beispiele in der Spektroskopie anwenden: z. B. auf die Wechselwirkung von Ultraviolett-Laserpulsen mit Heliumatomen, die kürzlich am MPIK in der Gruppe von Thomas Pfeifer untersucht wurde. Auch im aktuellen Fall der Röntgenstreuung an Atomkernen lässt sich aus der Linienform exakt die Verzögerung durch die Eisenkernene extrahieren, was die Basis für eine vollständige Charakterisierung ihres Quantenzustands im Röntgenbereich bildet. Eine weitere mögliche Anwendung ist die hochpräzise Stabilisierung von Röntgeninterferometern.

Kilian Heeg hat im Rahmen seiner Doktorarbeit am MPIK sowohl durch Modellrechnungen als auch im Experiment die wesentlichen Beiträge zu der Studie geliefert. Die Motivation für das zweite Experiment schildert er so: „Einerseits besteht Bedarf an möglichst schmalbandiger (energiescharfer) Röntgenstrahlung, andererseits möchten wir in Zukunft nichtlineare Effekte in der nuklearen Quantenoptik demonstrieren.“

Voraussetzung dafür ist es, die Wechselwirkung zwischen Röntgenlicht und Eisenkernen zu verstärken. Hierzu kontrollierten die Physiker die Wechselwirkung mit den Eisenkernen derart, dass die eingestrahlten Röntgenpulse erheblich verlangsamt wurden – und zwar auf weniger als ein Zehntausendstel der Lichtgeschwindigkeit im Vakuum. Die „normale“ Verlangsamung von sichtbarem Licht in einem Medium wie Glas beträgt hingegen nur etwa 30%. Die starke Verlangsamung konnte erreicht werden, indem die einzelnen zum Röntgenpuls beitragenden Lichtwellen durch die Wechselwirkung mit den Eisenkernen geeignet gegeneinander verzögert wurden.

Zur Detektion des verlangsamten Lichts nutzten die Physiker trickreich die Eigenschaft der Eisenprobe, bei resonanter Streuung die Polarisation des Röntgenlichtes zu drehen. Ein entsprechendes leistungsfähiges Polarimeter, das an der Universität Jena entwickelt wurde, erlaubt den ungewünschten nicht-resonanten Anteil zu unterdrücken (Abb. 2a). Damit war der verlangsamte Puls zugänglich.

„Um diesen Effekt direkt zu messen, haben wir eine dünne Eisenfolie in den Strahlengang eingebracht, die mit dem gleichen Kernübergang wie in der Probe einen schmalen Teil des ansonsten sehr breiten Frequenzspektrums des Röntgenlichts herausschneidet“, erläutert Gruppenleiter Jörg Evers. Dies führt dazu, dass der sehr kurze Röntgenpuls in seinem zeitlichen Verlauf eine echoartige Serie von Nachpulsen erhält (Abb. 2b).

Diese erscheint auch bei dem resonant gestreuten verlangsamten Licht – aber eben um eine Zeit τ verzögert (Abb 2c). Durch Bewegung der Eisenfolie lässt sich deren Absorptionsfrequenz gegenüber der Probe durch den Dopplereffekt verstimmen und so die Verzögerung kontrollieren, die bis zu 35 Nanosekunden beträgt (Abb. 2d). Das „langsame“ Röntgenlicht kann die Wechselwirkung mit den Eisenkernen effektiv erhöhen. Damit hofft die Gruppe um Jörg Evers, einen Zugang zu nichtlinearer Wechselwirkung im Röntgenbereich zu gewinnen, die bisher nicht beobachtet werden konnte. (JE/BF)

Originalpublikationen:

Interferometric phase detection at x-ray energies via Fano resonance control
K. P. Heeg, C. Ott, D. Schumacher, H.-C. Wille, R. Röhlsberger, T. Pfeifer, and J. Evers
Physical Review Letters 114, 207401 (2015); DOI: 10.1103/PhysRevLett.114.207401

Tunable sub-luminal propagation of narrowband x-ray pulses
Kilian P. Heeg, Johann Haber, Daniel Schumacher, Lars Bocklage, Hans-Christian Wille, Kai S. Schulze, Robert Loetzsch, Ingo Uschmann, Gerhard G. Paulus, Rudolf Rüffer, Ralf Röhlsberger, and Jörg Evers
Physical Review Letters 114, 203601 (2015); DOI: 10.1103/PhysRevLett.114.203601

Kontakt:

PD Dr. Jörg Evers
MPI für Kernphysik Heidelberg
Tel.: +49 6221 516 177
E-Mail: joerg.evers@mpi-hd.mpg.de

Dr. Kilian Heeg
MPI für Kernphysik Heidelberg
Tel.: +49 6221 516 178
E-Mail: kilian.heeg@mpi-hd.mpg.de

Prof. Dr. Thomas Pfeifer
MPI für Kernphysik Heidelberg
Tel.: +49 6221 516 380
E-Mail: thomas.pfeifer@mpi-hd.mpg.de

Prof. Dr. Ralf Röhlsberger
Deutsches Elektronen-Synchrotron DESY
Tel.: +49 40 8998 4503
E-Mail: ralf.roehlsberger@desy.de

Prof. Dr. Gerhard Paulus
Friedrich-Schiller-Universität Jena
Tel.: +49 3641 9 47200
E-Mail: gerhard.paulus@uni-jena.de

Weitere Informationen:

http://www.mpi-hd.mpg.de/keitel/evers/ Theorie-Gruppe "Correlated and X-Ray Quantum Dynamics", MPIK (Jörg Evers)
http://www.desy.de/forschung/anlagen__projekte/petra_iii/index_ger.html Röntgenstrahlquelle PETRA III am DESY
http://www.physik2.uni-jena.de/inst/nlo/start.html Lehrstuhl Nichtlineare Optik, Universität Jena
http://physics.aps.org/articles/v8/47 Physics Viewpoint: Cavity with Iron Nuclei Slows Down X Rays

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie