Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein tiefer Blick ins einzelne Molekül

09.02.2016

Weltweit erstmals hat eine Forschergruppe den Rotationszustand eines einzelnen Moleküls zerstörungsfrei gemessen. Piet Schmidt und seine Kollegen vom QUEST-Institut in der Physikalisch-Technischen Bundesanstalt (PTB) verfolgten die Veränderung des Rotationszustandes eines gefangenen und indirekt lasergekühlten Molekülions – und zwar live, also direkt während des Geschehens. Dies ermöglicht eine neue Methode der Präzisionsspektroskopie mit Anwendungen, die von der Chemie bis hin zu Tests fundamentaler Physik reichen. Ihre Ergebnisse sind in der aktuellen Ausgabe von „Nature“ veröffentlicht.

Quantenzustand erstmals live und zerstörungsfrei gemessen


Konzeptioneller Aufbau des Experiments: MgH+(orange) und Mg+ (grün) sind gemeinsam in einer linearen Ionenfalle gefangen. Der Ionenkristall wird über Mg+ in den Grundzustand gekühlt. Eine oszillierende Dipolkraft ändert den Bewegungszustand abhängig vom Rotationszustand von MgH+. Dies wird über Mg+ ausgelesen. (Abb.: PTB)


Typisches Detektionssignal, in dem ein Quantensprung in den (J = 1)-Rotationszustand (Sprung vom roten zum blauen Bereich) des Moleküls und aus ihm heraus (blau nach rot) zu sehen ist. (Abb.: PTB)

Atome können heutzutage mithilfe von Lasern manipuliert und mit höchster Genauigkeit untersucht werden, z. B. in optischen Uhren. Dabei kommt der Messung des Quantenzustands eine zentrale Rolle zu: Leuchtet das Atom bei Bestrahlung mit einem Laser, kennt man seinen Zustand.

Viele Atome und die meisten Moleküle können jedoch gar nicht leuchten. Zur Detektion von Molekülen hat man in der Vergangenheit daher ausgenutzt, dass sich diese – abhängig von ihrem Quantenzustand – bei Bestrahlung mit speziellem Laserlicht in ihre atomaren Bestandteile zerlegen. Durch die Zerstörung des Moleküls kann so der Quantenzustand nachgewiesen werden - allerdings nur einmal pro Molekül.

Projektleiter Piet Schmidt hat viel Erfahrung dabei, das Problem der Zustandsdetektion zu lösen. Er war in der Arbeitsgruppe von Nobelpreisträger David Wineland an der Entwicklung der Quantenlogikspektroskopie beteiligt und baute sie selber zur Photonen-Rückstoß-Spektroskopie aus. Bei diesen neuen Spektroskopie-Methoden ist das Prinzip immer dasselbe: Man stellt dem zu messenden Teilchen ein zweites zur Seite, das man gut manipulieren und detektieren kann.

Durch die elektrische Abstoßung sind die beiden gefangenen Ionen wie mit einer starken Feder verbunden, sodass sie alle Bewegungen synchron ausführen. So kann man an einem Teilchen messen, um die Eigenschaften des anderen Teilchens zu ermitteln. Konkret verwenden Schmidt und Kollegen ein molekulares MgH+-Ion (das sie untersuchen wollen) und ein atomares Mg+-Ion (an dem sie die Messungen durchführen).

Sie fangen die beiden einzelnen Teilchen in einer Ionenfalle zwischen elektrischen Feldern ein. Dann kühlen sie sie mithilfe von Lasern bis in den Grundzustand, in dem die synchrone Schwingung der beiden Teilchen fast zum Stillstand kommt.

Was jetzt folgt, ist neu: Um herauszufinden, in welchem quantenmechanischen Rotationszustand sich das Molekül gerade befindet, benutzen die Wissenschaftler einen weiteren Laser, der einer optischen Pinzette ähnelt. Mit diesem können Kräfte auf das Molekül ausgeübt werden.

„Der Laser rüttelt an dem Molekül, aber nur dann, wenn es sich gerade in einem ganz bestimmten Rotationszustand befindet“, erläutert Fabian Wolf, Physiker in der Gruppe. „Die Wirkung – eine Anregung der gemeinsamen Bewegung von Molekül und Atom – können wir über das Atom mithilfe von weiteren Lasern nachweisen. Leuchtet das Atom, war das Molekül im ausgewählten Rotationszustand, ansonsten nicht.“

„Durch den zerstörungsfreien Nachweis konnten wir live beobachten, wie das Molekül von der Wärmestrahlung in den Rotationszustand gebracht wird und wann es von diesem in einen anderen springt. Dies ist das erste Mal, dass solche Quantensprünge in einem isolierten Molekül direkt beobachtet werden konnten. Außerdem haben wir genauer als je zuvor die Übergangsfrequenz zu einem elektronisch angeregten Zustand gemessen“, betont Piet Schmidt. Er formuliert auch das weitere Ziel: „Wir wollen als nächstes jenen quantenmechanischen Zustand, der jetzt noch von der thermischen Umgebungsstrahlung quasi zufällig hergestellt wird, gezielt selber präparieren.“

Schon jetzt sind die Forscher aber sicher, dass ihre Entwicklung bei denjenigen Wissenschaftlerkollegen für Aufsehen sorgen wird, die eine solch präzise Spektroskopiemethode benötigen: etwa bei Chemikern, die mehr über das Innenleben von Molekülen herausfinden wollen, oder bei Astronomen, die über die Spektren von kalten Molekülen etwas über astrophysikalische Phänomene und die Entstehung des Universums lernen wollen. Oder bei jenen Physikern, die nach möglichen Änderungen von Naturkonstanten oder bislang verborgenen Eigenschaften von Elementarteilchen suchen, etwa nach einem möglichen Dipolmoment des Elektrons.

Diese Tests fundamentaler Physik waren auch für Schmidt die Motivation für die Entwicklung der neuen Detektionsmethode. „Um diese Anwendungen zu erschließen, müssen wir die optische Spektroskopie an Molekülionen auf ein Niveau heben, wie wir es bei optischen Uhren jetzt schon mit Atomen schaffen“, gibt Schmidt das Ziel vor. „Dazu müssen wir um viele Größenordnungen genauer messen, was vermutlich noch einige Jahre dauert.“
es/ptb

Ansprechpartner:
Prof. Dr. Piet O. Schmidt
QUEST-Institut in der PTB
Telefon (0531) 592-4700
E-Mail: piet.schmidt@quantummetrology.de

Die wissenschaftliche Veröffentlichung:
F. Wolf, Y. Wan, J. C. Heip, F. Gebert, C. Shi, P. O. Schmidt: Non-destructive state detection for quantum logic spectroscopy of molecular ions. Nature (2016), DOI: 10.1038/nature16513

Weitere Informationen:

http://www.ptb.de/cms/presseaktuelles/journalisten/presseinformationen/presseinf... - ab 9.2.2016 unter diesem Link im PTB-Web zu finden

Dipl.-Journ. Erika Schow | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie