Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Quantenlogikgatter zwischen Licht und Materie

10.04.2014

Wissenschaftler am MPQ verarbeiten erstmals Quanteninformation mit einem System aus einem optischem Photon und einem gefangenen Atom.

Bei einer Reihe von Aufgaben wie dem Erkennen komplexer Muster oder der Entschlüsselung geheimer Nachrichtencodes stoßen herkömmliche Computer an ihre Grenzen. Eine neue Qualität bei der Kommunikation und Verarbeitung von Daten versprechen sich Forscher weltweit von einer Technologie, welche die besonderen Eigenschaften von Quantenteilchen wie Superposition und Verschränkung nutzt.


Herzstück des Experiments: Ein einzelnes Atom wird im schmalen Spalt zwischen zwei hochreflektierenden Spiegeln (hellblau) gefangen. Werden nun einzelne Photonen vom Resonator reflektiert, wird dabei eine quantenlogische Rechenoperation zwischen dem Atom und den Photonen durchgeführt. Bild: Andreas Reiserer, MPQ, Abt. Quantendynamik

Bei der Entwicklung von solchen Quantencomputern werden ganz unterschiedliche Konzepte verfolgt. Prof. Gerhard Rempe, Direktor am MPQ und Leiter der Abteilung Quantendynamik, setzt dabei auf die Strategie, zwei verschiedenartige Techniken, die Datenkommunikation mit Photonen und die Datenverarbeitung mit Atomen, miteinander zu verknüpfen.

Sein Team hat jetzt erstmals mit einem hybriden System aus einem einzelnen Photon und einem einzelnen Atom ein logisches Quantengatter realisiert (Nature, 10. April 2014). Diese Entwicklung könnte einen Meilenstein auf dem Weg zu einem skalierbaren und universellen Quantencomputer markieren.

Alle heutigen Rechenmaschinen arbeiten nach einem mathematischen Konzept, das der deutsche Universalgelehrte Gottfried Wilhelm Leibniz bereits vor mehr als 300 Jahren entwickelt hat. Danach können Informationen im Binärsystem kodiert und mit Hilfe logischer Operatoren verarbeitet werden.

Die darauf basierenden logischen Gatter haben die Aufgabe, aus einer Kombination von binären Eingangssignalen gemäß einer sogenannten Wahrheitstabelle eindeutige Ausgangssignale zu generieren. Moderne Computer enthalten viele Millionen solcher Gatter in Form elektronischer Schaltungen.

In dem hier beschriebenen Experiment werden die binären Zustände 0 und 1 durch die beiden Spin-Richtungen (aufwärts oder abwärts) eines einzelnen Atoms bzw. durch die beiden Polarisationszustände (links oder rechts drehend) eines einzelnen optischen Lichtquants dargestellt. Im Unterschied zu klassischen Bits können sich diese „Quantenbits“ auch in einer Überlagerung (Superposition) der zwei Zustände befinden.

Für die Realisierung des Quantengatters wird das Atom in einem aus zwei Spiegeln höchster Güte gebildeten Resonator eingefangen. Die Eigenschaften des Resonators werden so gewählt, dass er mit dem Atom ein stark gekoppeltes System bildet. Die Lichtquanten werden in Form von schwachen Laserpulsen präpariert, die im Mittel weniger als ein Photon enthalten.

Bereits in einem früheren Experiment wurde gezeigt, dass die Lichtquanten bei geeigneter Wahl der Parameter immer reflektiert werden. Entscheidend dabei ist, dass die Photonen bei bestimmten Kombinationen aus atomaren und photonischen Eingangszuständen direkt am ersten Spiegel des Resonators reflektiert werden.

Bei anderen Kombinationen dringen sie dagegen zunächst in den Resonator ein, verlassen ihn dann aber wieder auf demselben Weg, wobei sie eine Phasenverschiebung von 180 Grad erfahren. „Diese Phasendifferenz ist die Voraussetzung für die Umsetzung einer Wahrheitstabelle, die jeder Bit-Kombination des Eingangssignals eindeutige Ausgangssignale zuordnet, ganz analog zu einem klassischen Logikgatter“, erklärt Dr. Stephan Ritter.

„In unserem Experiment bestimmen wir sowohl die Polarisation der reflektierten Photonen als auch die Spin-Orientierung des Atoms nach der Gatteroperation. Die gemessenen Daten stimmen gut mit den theoretischen Vorhersagen überein. Die Effizienz des Gatters beträgt momentan knapp 70%. Dieser Wert ließe sich durch Verbesserungen der Spiegelparameter noch deutlich steigern.“, erläutert Andreas Reiserer.

Das hybride System aus Photon und Atom kann somit ein klassisches Logikgatter nachbilden. Die wahre Überlegenheit eines Quantenlogikgatters steckt jedoch in der Möglichkeit, aus zwei getrennten Eingangszuständen miteinander verschränkte Ausgangszustände zu erzeugen. Um diese Eigenschaft zu überprüfen, wurde in einem weiteren Versuch eine Bit-Kombination als Eingangssignal gewählt, die nach den Regeln der Quantenmechanik zu einer Verschränkung von Atom und Photon nach der Gatteroperation führen muss. Auch hier funktionierte das Gatter den Erwartungen entsprechend.

Indem sie das Atom-Resonator-System innerhalb einer kurzen Zeitspanne mit zwei Laserpulsen bestrahlten, erzielten die Physiker sogar eine Verschränkung des Atoms mit zwei Lichtquanten. In einem nächsten Schritt manipulierten sie die Eigenschaften des Atoms so, dass es aus der Verschränkung gelöst wurde. Übrig blieb ein Paar aus zwei miteinander verschränkten Photonen. „Diese Messungen zeigen die Vielseitigkeit des Gattermechanismus, der es sogar ermöglicht, eine Wechselwirkung zwischen zwei Lichtquanten zu vermitteln“, sagt Norbert Kalb. „Im Prinzip können wir damit auch Zustände erzeugen, in denen das Atom mit einer Vielzahl von Photonen verschränkt ist.“

Die Entwicklung des hybriden Quantenlogikgatters könnte ein großer Schritt in Richtung eines universellen Quantencomputers sein. „Die Kommunikation von Quanteninformation mit Photonen und die Datenverarbeitung mit stationären Systemen wie Atomen oder Ionen wurden bislang zumeist als eigene Spezialgebiete betrachtet“, führt Prof. Gerhard Rempe aus. „In unserer Arbeit führen wir beide Techniken zusammen. Unser Quantengatter lässt sich leicht in einem System implementieren, in dem einzelne Atome als stationäre Speicher dienen, zwischen denen einzelne Photonen die Quanteninformation auch über weite Strecken übertragen können. Damit hoffen wir, zur Realisierung eines skalierbaren Quantencomputers beitragen zu können.“ Olivia Meyer-Streng

Originalveröffentlichung:

Andreas Reiserer, Norbert Kalb, Gerhard Rempe and Stephan Ritter
A quantum gate between a flying optical photon and a single trapped atom
Nature, 10. April 2014

Kontakt:

Prof. Dr. Gerhard Rempe
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -701 /Fax: -311
E-Mail: gerhard.rempe@mpq.mpg.de

Dr. Stephan Ritter
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -728 /Fax: -395
E-Mail: stephan.ritter@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie