Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein neuer, regelbarer Baustein für die Spintronik

29.08.2014

Internationales Forscherteam um Mainzer Physiker Jairo Sinova verwirklicht effizienten und verstellbaren Spin-Ladungs-Wandler aus Gallium-Arsenid. Ihre Ergebnisse haben die Forscher kürzlich in der renommierten Fachzeitschrift Nature Materials veröffentlicht.

Spin-Ladungs-Wandler sind wichtige Bauelemente für die Spintronik, eine Elektronik, die nicht nur die Ladung sondern auch den Spin und die damit verknüpften magnetischen Eigenschaften der Elektronen zur Übertragung und Speicherung von Informationen nutzt.

Spin-Ladungs-Wandler können elektrische in magnetische Signale umwandeln und umgekehrt. Jetzt ist es der Gruppe von Professor Jairo Sinova vom Institut für Physik der Johannes Gutenberg Universität Mainz (JGU) zusammen mit Forschern aus Großbritannien, Prag und Japan erstmals gelungen, einen neuen, sehr effizienten Spin-Ladungs-Wandler auf Basis des weit verbreiteten Halbleitermaterials Gallium-Arsenid (GaAs) zu realisieren.

Vergleichbar hohe Effizienzen waren bislang nur in dem Schwermetall Platin beobachtet worden. Zugleich konnten die Forscher erstmals zeigen, dass die Effizienz bei der Herstellung oder Registrierung von Spin-Strömen in einem gewissen Bereich nach Bedarf elektrisch regelbar ist, eine wichtige Eigenschaft für den praktischen Einsatz.

Der zugrundeliegende Mechanismus, den die theoretischen Arbeiten von Sinovas Gruppe aufgedeckt haben, eröffnet darüber hinaus ganz neue Wege bei der Suche nach weiteren, für die Spintronik geeigneten Materialien. Ihre Ergebnisse haben die Forscher kürzlich in der renommierten Fachzeitschrift Nature Materials veröffentlicht.

Bei der Spintronik werden nicht nur – wie in der Elektronik – die Ladungen von Elektronen für die Übertragung und Speicherung von Information genutzt, sondern auch ihr Spin. Darunter kann man sich eine Rotation der Elektronen um die eigene Achse vorstellen, die ein Magnetfeld hervorruft. Je nach Drehsinn zeigt der Nordpol dieser winzigen Magnete nach oben oder unten, man spricht von „Spin-up“ und „Spin-down“. In manchen Materialien richten sich die Spins spontan einheitlich aus. Das führt dann zu dem von Eisen bekannten ferro-magnetischen Verhalten. Durch „Spin-up“ und „Spin-down“ lassen sich aber auch zwei Zustände – 0 und 1 – eindeutig unterscheiden. Auf diesem Prinzip basiert heute schon die Datenspeicherung in Computer-Festplatten.

Wenn der Elektronenspin in die Übertragung und Speicherung von Information einbezogen wird, können elektronische Bauteile mit neuen Funktionalitäten entwickelt werden, die effizienter arbeiten als bisher. Um den Elektronenspin entsprechend nutzen zu können, muss er gezielt manipuliert, das heißt ausgerichtet, transportiert und registriert werden können.

Dass hierfür nicht nur Magnetfelder sondern auch elektrische Felder geeignet sind, zeigt die neu publizierte Arbeit. Damit können die sehr einfachen und präzisen Steuerungsmöglichkeiten, die in der Halbleiterelektronik für Ladung und Ladungsfluss existieren, in den Bereich der Spintronik übertragen werden und so die Welt der Halbleiter mit der Welt des Magnetismus verknüpfen.

Hierbei sind Spin-Ladungs-Wandler essentiell. Sie ermöglichen es, Ladungsflüsse in Spin-Flüsse zu verwandeln, also elektrische Signale in magnetische, und umgekehrt. Hierfür nutzen die Forscher den sogenannten Spin-Hall-Effekt, ein relativistisches Phänomen, an dessen Entdeckung im Jahr 2004 Jairo Sinova bereits beteiligt war.

Beim Spin-Hall-Effekt treibt ein elektrisches Feld Elektronen durch eine Leiterplatte. Der klassische Hall-Effekt, der aus der Schulphysik bekannt ist, beruht auf der Wechselwirkung der bewegten Elektronen-Ladung mit einem externen Magnetfeld, das die Elektronen senkrecht zu ihrer Bewegungsrichtung abgelenkt. So entsteht zwischen beiden Seiten der Leiterplatte die sogenannte Hall-Spannung. Beim Spin-Hall-Effekt werden Elektronen mit ihren Spins betrachtet. Sie wurden erzeugt, indem die Probe mit zirkular polarisiertem Licht bestrahlt wurde. Dadurch sind die Spins parallel oder antiparallel zueinander ausgerichtet, und zwar senkrecht zur Leiterebene und zu ihrer Bewegungsrichtung. Die sich bewegenden Elektronen-Spins werden aufgrund der für das Material typischen, sogenannten Spin-Bahn-Kopplung, ein relativistischer elektromagnetischer Effekt, nach rechts oder links abgelenkt, je nach Orientierung des Spins. Auf diese Weise können die beiden Spin-Richtungen separiert werden.

Für den Einsatz in der Praxis ist es wichtig, dass diese Spin-Trennung möglichst effizient erfolgt. Bislang erwiesen sich Schwermetalle wie Platin als am effizientesten, weil die Spin-Bahn-Kopplung in schweren Elementen, die in ihrem Atomkern viele Protonen (positive Ladungsträger) besitzen, besonders stark ist.

Nun haben die Forscher um Jairo Sinova herausgefunden, dass eines der am häufigsten verwendeten Halbleitermaterialien, Gallium-Arsenid (GaAs), ähnlich effizient ist wie Platin, und das bei Raumtemperatur – eine wichtige Voraussetzung für die Anwendung. Darüber hinaus konnten sie erstmals zeigen, dass sich die Effizienz der Spin-Ladungs-Wandlung sogar kontinuierlich einstellen lässt, und zwar über die Stärke des elektrischen Feldes, das die Elektronen vorwärts treibt.

Welche Mechanismen diesen Phänomenen zugrunde liegen, haben die theoretischen Berechnungen von Sinova und seiner Gruppe gezeigt. Wenn sich die Elektronen durch den Halbleiter bewegen, sind sie – wie Physiker sagen – in unterschiedlichen Tälern im Leitungsband unterwegs. Man kann sich das Leitungsband als eine Art mehrspuriger Autobahn für die Elektronen vorstellen, wobei auf jeder Spur eine Mindestgeschwindigkeit herrscht. Durch ein höheres elektrisches Feld wird den Elektronen der Wechsel von einer Spur auf die nächste ermöglicht.

Die Stärke der Spin-Bahn-Kopplung ist auf jeder dieser Spuren anders, und das wirkt sich wiederum auf die Stärke des Spin-Hall-Effektes aus. Weil die Forscher die Elektronen-Spins nun beliebig auf die verschiedenen Spuren verteilen können, können sie auch die Stärke des Spin-Hall-Effekts und damit die Effizienz des Spin-Ladungs-Wandlers beliebig einstellen.

Mit ihrer Idee, die Täler im Leitungsband gezielt zu nutzen, eröffnen die Forscher um Sinova einen neuen Weg, um weitere für die Spintronik geeignete Materialien zu finden und zu entwickeln. Insbesondere, weil es bereits mit heutigen Herstellungsverfahren der Halbleiterindustrie möglich ist, die Position der Täler und die Stärke der Spin-Bahn-Kopplung sehr genau einzustellen, etwa durch gezielten Einbau von Fremdelementen wie Aluminium in den Halbleiter.

Veröffentlichung:
N. Okamoto, H. Kurebayashi, T. Trypiniotis, I. Farrer, D. A. Ritchie, E. Saitoh, J. Sinova, J. Mašek, T. Jungwirth & C. H. W. Barnes
Electric control of the spin Hall effect by intervalley transitions
Nature Materials, published online August 2014, doi: 10.1038/nmat4059

Weitere Informationen:
Univ.-Prof. Dr. Jairo Sinova
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-21284
Fax +49 6131 39-26267
E-Mail: sinova@uni-mainz.de

Weitere Informationen:

http://www.sinova-group.physik.uni-mainz.de/

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Raumschrott im Fokus
20.05.2018 | Universität Bern

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics