Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein neuer, regelbarer Baustein für die Spintronik

29.08.2014

Internationales Forscherteam um Mainzer Physiker Jairo Sinova verwirklicht effizienten und verstellbaren Spin-Ladungs-Wandler aus Gallium-Arsenid. Ihre Ergebnisse haben die Forscher kürzlich in der renommierten Fachzeitschrift Nature Materials veröffentlicht.

Spin-Ladungs-Wandler sind wichtige Bauelemente für die Spintronik, eine Elektronik, die nicht nur die Ladung sondern auch den Spin und die damit verknüpften magnetischen Eigenschaften der Elektronen zur Übertragung und Speicherung von Informationen nutzt.

Spin-Ladungs-Wandler können elektrische in magnetische Signale umwandeln und umgekehrt. Jetzt ist es der Gruppe von Professor Jairo Sinova vom Institut für Physik der Johannes Gutenberg Universität Mainz (JGU) zusammen mit Forschern aus Großbritannien, Prag und Japan erstmals gelungen, einen neuen, sehr effizienten Spin-Ladungs-Wandler auf Basis des weit verbreiteten Halbleitermaterials Gallium-Arsenid (GaAs) zu realisieren.

Vergleichbar hohe Effizienzen waren bislang nur in dem Schwermetall Platin beobachtet worden. Zugleich konnten die Forscher erstmals zeigen, dass die Effizienz bei der Herstellung oder Registrierung von Spin-Strömen in einem gewissen Bereich nach Bedarf elektrisch regelbar ist, eine wichtige Eigenschaft für den praktischen Einsatz.

Der zugrundeliegende Mechanismus, den die theoretischen Arbeiten von Sinovas Gruppe aufgedeckt haben, eröffnet darüber hinaus ganz neue Wege bei der Suche nach weiteren, für die Spintronik geeigneten Materialien. Ihre Ergebnisse haben die Forscher kürzlich in der renommierten Fachzeitschrift Nature Materials veröffentlicht.

Bei der Spintronik werden nicht nur – wie in der Elektronik – die Ladungen von Elektronen für die Übertragung und Speicherung von Information genutzt, sondern auch ihr Spin. Darunter kann man sich eine Rotation der Elektronen um die eigene Achse vorstellen, die ein Magnetfeld hervorruft. Je nach Drehsinn zeigt der Nordpol dieser winzigen Magnete nach oben oder unten, man spricht von „Spin-up“ und „Spin-down“. In manchen Materialien richten sich die Spins spontan einheitlich aus. Das führt dann zu dem von Eisen bekannten ferro-magnetischen Verhalten. Durch „Spin-up“ und „Spin-down“ lassen sich aber auch zwei Zustände – 0 und 1 – eindeutig unterscheiden. Auf diesem Prinzip basiert heute schon die Datenspeicherung in Computer-Festplatten.

Wenn der Elektronenspin in die Übertragung und Speicherung von Information einbezogen wird, können elektronische Bauteile mit neuen Funktionalitäten entwickelt werden, die effizienter arbeiten als bisher. Um den Elektronenspin entsprechend nutzen zu können, muss er gezielt manipuliert, das heißt ausgerichtet, transportiert und registriert werden können.

Dass hierfür nicht nur Magnetfelder sondern auch elektrische Felder geeignet sind, zeigt die neu publizierte Arbeit. Damit können die sehr einfachen und präzisen Steuerungsmöglichkeiten, die in der Halbleiterelektronik für Ladung und Ladungsfluss existieren, in den Bereich der Spintronik übertragen werden und so die Welt der Halbleiter mit der Welt des Magnetismus verknüpfen.

Hierbei sind Spin-Ladungs-Wandler essentiell. Sie ermöglichen es, Ladungsflüsse in Spin-Flüsse zu verwandeln, also elektrische Signale in magnetische, und umgekehrt. Hierfür nutzen die Forscher den sogenannten Spin-Hall-Effekt, ein relativistisches Phänomen, an dessen Entdeckung im Jahr 2004 Jairo Sinova bereits beteiligt war.

Beim Spin-Hall-Effekt treibt ein elektrisches Feld Elektronen durch eine Leiterplatte. Der klassische Hall-Effekt, der aus der Schulphysik bekannt ist, beruht auf der Wechselwirkung der bewegten Elektronen-Ladung mit einem externen Magnetfeld, das die Elektronen senkrecht zu ihrer Bewegungsrichtung abgelenkt. So entsteht zwischen beiden Seiten der Leiterplatte die sogenannte Hall-Spannung. Beim Spin-Hall-Effekt werden Elektronen mit ihren Spins betrachtet. Sie wurden erzeugt, indem die Probe mit zirkular polarisiertem Licht bestrahlt wurde. Dadurch sind die Spins parallel oder antiparallel zueinander ausgerichtet, und zwar senkrecht zur Leiterebene und zu ihrer Bewegungsrichtung. Die sich bewegenden Elektronen-Spins werden aufgrund der für das Material typischen, sogenannten Spin-Bahn-Kopplung, ein relativistischer elektromagnetischer Effekt, nach rechts oder links abgelenkt, je nach Orientierung des Spins. Auf diese Weise können die beiden Spin-Richtungen separiert werden.

Für den Einsatz in der Praxis ist es wichtig, dass diese Spin-Trennung möglichst effizient erfolgt. Bislang erwiesen sich Schwermetalle wie Platin als am effizientesten, weil die Spin-Bahn-Kopplung in schweren Elementen, die in ihrem Atomkern viele Protonen (positive Ladungsträger) besitzen, besonders stark ist.

Nun haben die Forscher um Jairo Sinova herausgefunden, dass eines der am häufigsten verwendeten Halbleitermaterialien, Gallium-Arsenid (GaAs), ähnlich effizient ist wie Platin, und das bei Raumtemperatur – eine wichtige Voraussetzung für die Anwendung. Darüber hinaus konnten sie erstmals zeigen, dass sich die Effizienz der Spin-Ladungs-Wandlung sogar kontinuierlich einstellen lässt, und zwar über die Stärke des elektrischen Feldes, das die Elektronen vorwärts treibt.

Welche Mechanismen diesen Phänomenen zugrunde liegen, haben die theoretischen Berechnungen von Sinova und seiner Gruppe gezeigt. Wenn sich die Elektronen durch den Halbleiter bewegen, sind sie – wie Physiker sagen – in unterschiedlichen Tälern im Leitungsband unterwegs. Man kann sich das Leitungsband als eine Art mehrspuriger Autobahn für die Elektronen vorstellen, wobei auf jeder Spur eine Mindestgeschwindigkeit herrscht. Durch ein höheres elektrisches Feld wird den Elektronen der Wechsel von einer Spur auf die nächste ermöglicht.

Die Stärke der Spin-Bahn-Kopplung ist auf jeder dieser Spuren anders, und das wirkt sich wiederum auf die Stärke des Spin-Hall-Effektes aus. Weil die Forscher die Elektronen-Spins nun beliebig auf die verschiedenen Spuren verteilen können, können sie auch die Stärke des Spin-Hall-Effekts und damit die Effizienz des Spin-Ladungs-Wandlers beliebig einstellen.

Mit ihrer Idee, die Täler im Leitungsband gezielt zu nutzen, eröffnen die Forscher um Sinova einen neuen Weg, um weitere für die Spintronik geeignete Materialien zu finden und zu entwickeln. Insbesondere, weil es bereits mit heutigen Herstellungsverfahren der Halbleiterindustrie möglich ist, die Position der Täler und die Stärke der Spin-Bahn-Kopplung sehr genau einzustellen, etwa durch gezielten Einbau von Fremdelementen wie Aluminium in den Halbleiter.

Veröffentlichung:
N. Okamoto, H. Kurebayashi, T. Trypiniotis, I. Farrer, D. A. Ritchie, E. Saitoh, J. Sinova, J. Mašek, T. Jungwirth & C. H. W. Barnes
Electric control of the spin Hall effect by intervalley transitions
Nature Materials, published online August 2014, doi: 10.1038/nmat4059

Weitere Informationen:
Univ.-Prof. Dr. Jairo Sinova
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-21284
Fax +49 6131 39-26267
E-Mail: sinova@uni-mainz.de

Weitere Informationen:

http://www.sinova-group.physik.uni-mainz.de/

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie