Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Blick hinter den Kulissen bei der Entstehung protostellarer Scheiben

13.07.2016

Lange Zeit widersetzte sich die Entstehung von protostellaren Scheiben - eine Voraussetzung für das Entstehen von Planetensystemen um junge Sterne – den theoretischen Astrophysikern: In einer dichten, kollabierenden Wolke aus Gas und Staub würde auch das Magnetfeld mit ins Zentrum gezogen werden und dort seine Bremswirkung entfalten. Eine rotationsgestützte Scheibe kann kaum auf diese Art und Weise entstehen - es sei denn, die winzigen Staubkörner werden aus der Wolke entfernt, indem sie sich zu größeren Körnern zusammenklumpen. Dies ist das Ergebnis einer neuen Studie von Forschern des Max-Planck-Instituts für extraterrestrische Physik und anderen Intuitionen. Die realistischere Simulationen berücksichtigen nun auch nicht-ideale Magneto-Hydrodynamik sowie Ionisierungschemie, um eine rotationsgestützte protostellare Scheibe zu bilden.

Obwohl rotationsgestützte Scheiben um junge Sterne häufig beobachtet werden, war es für theoretische Studien bisher schwer, derartige Scheiben nachzubilden. Das Hauptproblem ist dabei das Magnetfeld der interstellaren Materie, das zur so genannten "magnetischen Bremskatastrophe" führt und zwar schon für mittlere Magnetfeldstärken.


Dieses Bild zeigt die protoplanetare Scheibe um den jungen Stern HL Tauri mit Substrukturen innerhalb der Scheibe, die noch nie zuvor gesehen wurden. Diese zeigen selbst die mögliche Position von Planeten, die sich in den dunklen Stellen des Systems bilden.

Credit: ALMA (ESO/NAOJ/NRAO)


Dieses Bild der Dunkelwolke Barnard 68 ist zusammengesetzt aus Aufnahmen im sichtbaren Licht und im nahen Infrarot. In diesem Wellenlängenbereich ist die kleine Wolke komplett undurchsichtig, da die Staubteilchen in ihrem Inneren das Licht weiter entfernt liegender Sterne verdunkeln.

Credit: ESO


Der Kollaps einer rotierenden molekularen Wolke führt zur Entstehung einer großen, rotationsgestützten Scheibe, wenn die kleinsten Teilchen entfernt wurden (b). In Anwesenheit dieser winzigen Teilchen verhindert die magnetische Bremswirkung die Bildung einer derartigen Scheibe (a). © MPE


Die Darstellung links zeigt die Dichteverteilung in einer kollabierenden Gaswolke für die Standardverteilung der Korngrößen. Auch wenn sich eine Konzentration in der Mitte bildet, besitzt die Scheibe nicht ausreichend Rotationsunterstützung um Sterne und Planeten zu bilden. Rechts ist die Dichteverteilung dargestellt, wenn die kleinsten Staubkörner entfernt wurden. In diesem Fall führt der Zufluss von Drehmoment zu einer viel größeren, rotationsgestützten Scheibe. © MPE

Bei Modellen mit idealer Magnetohydrodynamik (MHD) wird das Gas in das Magnetfeld "eingefroren" und die Feldlinien werden durch das kollabierende Gas in Richtung Mitte gezogen, so dass das Magnetfeld die Form einer Sanduhr erhält. Die stark zusammengepressten Feldlinien verbinden Materialien aus der unmittelbaren Nähe des Sterns mit Material viel weiter außen und übertragen Drehimpuls vom Zentrum weg.

Selbst in nicht-idealen MHD-Modellen, bei denen neutrale Materie relativ zum Magnetfeld wandern kann, bleibt die Entstehung von rotationsgestützten Scheiben schwierig, wenn Standard-Chemie zur Beschreibung der Ionisierung bei der Berechnung der nicht-idealen MHD-Effekte verwendet wird.

"Das Problem sind winzige Staubkörner; wenn sie nicht da sind, erhalten wir eine rotationsgestützte Scheibe", sagt Bo Zhao, Hauptautor der Studie, die jetzt in MNRAS veröffentlicht wurde.

"Diese winzigen Körner, die leicht durch die Absorption von Ionen und Elektronen elektrisch aufgeladen werden können, koppeln effektiv sowohl mit dem Magnetfeld als auch in Kollisionen mit den umgebenden Molekülen. Anders gesagt: auch die neutrale Materie ist aufgrund dieser winzigen Körner noch relativ gut mit dem Magnetfeld gekoppelt. Wenn wir diese nun aber entfernen, so koppeln die größeren Körner nicht so effektiv, so dass sich die neutrale Materie der Wolke viel schneller durch die Magnetfeldlinien schleichen kann und schließlich eine Scheibe bildet, die ausreichend Rotationsunterstützung besitzt. "

Interstellare Molekülwolken bestehen aus Gas und Staubkörnern mit einer "Standardverteilung" der Korngrößen, die auch eine große Menge an Körnchen in Nanometer-Größe enthält. Eine derartige Größenverteilung muss aber nicht unbedingt den dichteren Bereich der molekularen Wolke korrekt wiedergeben.

In kalten und dichten Molekülwolken können sich die winzigen Körner mit Nanometer-Größe wie große Moleküle verhalten und auf der Oberfläche von größeren Staubteilchen einfrieren. Eine weitere Unterstützung für diese Idee kommt von Beobachtungen bei Zentimeter-Wellenlängen, die versuchen Strahlung von rotierenden Staubkörnern nachzuweisen; auch sie zeigen, dass kleine Körner mit einer Größe unter wenigen Nanometern in dichten Molekülwolken fehlen.

"Wenn die Körner meist größer als 0,1 Mikrometer sind, können die rotationsgestützten Scheiben massereich genug werden, um selbst-gravitierend zu sein und Ringe zu bilden", sagt Zhao. "Eine solche Struktur in 3D könnte leicht in mehrere Sternsysteme fragmentieren, was auch die hohe Vielzahl der Sterne in unserer Milchstraße erklären könnte."

"Es ist sehr überraschend, dass die Entfernung der kleinen Staubkörnchen, die"magnetische Bremskatastrophe" bei der Scheibenbildung verhindern kann", sagt Paola Caselli, Co-Autorin der Studie. "Dies ist ein Durchbruch in unserem Verständnis, wie sich protoplanetare Scheiben bilden. Zugleich zeigt es, dass die Chemie und Mikrophysik für die grundlegenden Prozesse im Bereich der Stern- und Planetenentstehung von entscheidender Bedeutung sind."

Kontakt:

Zhao, Bo
Postdoc
Telefon: +49 (0)89 30000-3348
E-Mail: bz6g@mpe.mpg.de
 
Caselli, Paola
Direktor/in
Telefon: +49 (0)89 30000-3400
E-Mail: caselli@mpe.mpg.de
 
Hämmerle, Hannelore
Pressesprecher/in
Telefon: +49 (0)89 30000-3980
E-Mail: pr@mpe.mpg.de
 
Originalveröffentlichung

1.Bo Zhao, Paola Caselli, Zhi-Yun Li, Ruben Krasnopolsky, Hsien Shang, Fumitaka Nakamura

Protostellar Disk Formation Enabled by Removal of Small Dust Grains

Quelle

Hämmerle, Hannelore | Max-Planck-Institut für extraterrestrische Physik, Garching
Weitere Informationen:
http://www.mpe.mpg.de/6607730/news-20160711

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

nachricht Innovative High Power LED Light Engine für den UV Bereich
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie