Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Direkter Zerfall des Higgs-Teilchens in Fermionen nachgewiesen

23.06.2014

Forschende am CERN haben erstmals den direkten Zerfall des Higgs-Teilchens in zwei Fermionen nachgewiesen.

Dies ist ein weiterer starker Hinweis darauf, dass sich das 2012 entdeckte Teilchen so verhält, wie dies die Theorie des Standardmodells der Teilchenphysik voraussagt. Einen wichtigen Beitrag zu der in Nature Physics publizierten Studie leisteten Forschende der Universität Zürich.

Wissenschaftlern des CMS-Experiments am Large Hadron Collider (LHC) am CERN ist es erstmals gelungen, den direkten Zerfall des Higgs-Teilchens in Fermionen nachzuweisen. Bisher konnte das Higgs-Teilchen erst durch den Zerfall in Bosonen nachgewiesen werden.

«Wir sind damit einen wichtigen Schritt weiter gekommen», erklärt Prof. Vincenzo Chiochia vom Physik-Institut der UZH, dessen Gruppe an der Auswertung der Daten mitgearbeitet hat. «Wir wissen nun, dass das Higgs-Teilchen sowohl in Bosonen, wie auch in Fermionen zerfallen kann. Damit können wir gewisse Theorien ausschliessen, die davon ausgingen, dass das Higgs-Teilchen nur in bestimmte Arten von Teilchen zerfällt.» Die Fermionen bilden als eine Gruppe der Elementarteilchen die Materie, während Bosonen als Träger von Kräften zwischen den Fermionen vermitteln.

Gemäss Standardmodell der Teilchenphysik muss sich die Stärke der Wechselwirkung der Fermionen mit dem Higgs-Feld proportional zu ihrer Masse verhalten. «Diese Voraussage wurde bestätigt», so Chiochia. «Dies ist ein starker Hinweis darauf, dass sich das 2012 entdeckte Teilchen tatsächlich wie das in der Theorie postulierte Higgs-Teilchen verhält.»

Kombinierte Datenauswertung

Die Forschenden analysierten die Daten, die von 2011 bis 2012 am LHC gesammelt wurden. Sie kombinierten dabei die Auswertungen zu Zerfällen des Higgs-Teilchens in Bottom-Quarks und in Tau-Leptonen, die beide zur Teilchen-Gruppe der Fermionen gehören. Die Ergebnisse zeigen, dass es im Masse-Bereich des Higgs-Teilchens von 125 Gigaelektronenvolt (GeV) zu einer Häufung dieser Zerfälle kommt, und zwar mit einer Signifikanz von 3,8 Sigma. Das heisst, die Wahrscheinlichkeit, dass die Häufung allein auf Grund zufälliger Hintergrundprozesse zustande kommt, liegt bei etwa eins zu 14'000. In der Teilchenphysik geht man ab einer Signifikanz von 5 Sigma von einer bestätigten Entdeckung aus.

Messung der Higgs-Zerfallswege

Untersucht wurden drei verschiedene Zerfallsprozesse, wobei die Forschenden der UZH den Zerfall des Higgs-Teilchens in Taus analysierte. Weil das Higgs-Teilchen extrem kurzlebig ist, kann es nicht direkt, sondern nur durch seine Zerfallsprodukte nachgewiesen werden. Die Bottom-Quarks und Taus haben eine genügend lange Lebensdauer, damit sie im Pixel-Detektor des CMS-Experiments direkt gemessen werden können.


Die Universität Zürich und der Large Hadron Collider

Die Universität Zürich ist am LHC am CERN mit fünf experimentellen Forschungsgruppen aktiv:
Die Gruppen der Professoren Florencia Canelli, Vincenzo Chiochia und Ben Kilminster forschen am CMS-Detektor, die Gruppen von Prof. Ulrich Straumann und Nicola Serra am LHCb-Detektor. Bei der Analyse und Interpretation der Daten werden sie von den Gruppen der Professoren Thomas Gehrmann, Stefano Pozzorini, Gino Isidori und PD Dr. Massimiliano Grazzini unterstützt.

Der CMS-Detektor am CERN

Der CMS-Detektor misst mit sehr hoher Genauigkeit die Energie und den Impuls von Photonen, Elektronen, Myonen und anderen geladenen Partikeln. Innerhalb des 12'500 Tonnen schweren Detektors sind verschiedene Messinstrumente in Lagen angeordnet. Am Bau und Betrieb des CMS-Detektors sind weltweit 179 Institutionen beteiligt. Von Schweizer Seite sind dies die Universität Zürich, die ETH Zürich und das Paul-Scherrer-Institut, welche gemeinsam den CMS-Pixel-Detektor entwickelten und konstruierten.


Literatur:
The CMS Collaboration. «Evidence for the direct decay of the 125 GeV Higgs boson to fermions», Nature Physics Online, DOI: 10.1038/nphys3005


Kontakt:
Prof. Vincenzo Chiochia
Physik-Institut der Universität Zürich
Tel. + 41 22 767 60 41
Mobile: +41 76 487 57 50
E-Mail: vincenzo.chiochia@cern.ch

Bettina Jakob
Media Relations
Universität Zürich
Tel. +41 44 634 44 39
E-Mail: bettina.jakob@kommunikation.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Bettina Jakob | Universität Zürich

Weitere Berichte zu: Bosonen CERN CMS-Detektor Fermionen GeV Hadron Higgs-Teilchen LHC Teilchenphysik UZH Zerfall

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Erforschung von Elementarteilchen in Materialien

17.01.2017 | Physik Astronomie

Wasser - der heimliche Treiber des Kohlenstoffkreislaufs?

17.01.2017 | Geowissenschaften

Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab

17.01.2017 | Biowissenschaften Chemie