Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Glasfaser, in der das Licht stehenbleibt

08.04.2015

Ein wichtiger Schritt für die Quanten-Datenübertragung gelang an der TU Wien: Photonen in einer Glasfaser können durch Atome auf die Geschwindigkeit eines Schnellzugs abgebremst und für kurze Zeit sogar gestoppt werden.

Licht ist ein sehr nützliches Instrument für die Quantenkommunikation, doch es hat einen entscheidenden Nachteil: Es bewegt sich normalerweise mit Lichtgeschwindigkeit und kann nicht festgehalten werden. Ein Forschungsteam der TU Wien hat nun gezeigt, dass sich dieses Problem beheben lässt – und zwar nicht bloß in exotischen Quantensystemen, sondern in den bereits existierenden Glasfasernetzwerken.


Atome, gekoppelt an eine Glasfaser, können das Licht in der Faser drastisch verlangsamen.

TU Wien


Durch neue Quantentechnologien soll ein weltweites Quanten-Internet möglich werden.

TU Wien

Durch die geschickte Kopplung von Atomen an die Glasfaser konnte das Licht auf 180 km/h verlangsamt werden. Es gelang sogar, das Licht für kurze Zeit komplett anzuhalten und dann wieder abzurufen. Diese Technik ist eine wichtige Voraussetzung für ein zukünftiges Glasfaser-basiertes Quanten-Internet, in dem man Quanten-Information über große Distanzen teleportieren kann.

Lichtpulse, langsamer als ein Schnellzug

Im freien Raum ist die Lichtgeschwindigkeit immer gleich groß – ungefähr 300 Millionen Meter pro Sekunde. Schickt man Licht durch ein Medium wie Glas oder Wasser, wird es durch seine Wechselwirkung mit dem Medium allerdings ein bisschen abgebremst. „Bei unserem System ist dieser Effekt extrem, weil wir gezielt eine äußerst starke Wechselwirkung zwischen Licht und Materie erzeugen“, sagt Prof. Arno Rauschenbeutel (Atominstitut der TU Wien / Vienna Center for Quantum Science and Technology). „Die Geschwindigkeit des Lichts in unserer atombesetzten Glasfaser beträgt bloß 180 km/h – der Railjet der Österreichischen Bundesbahn ist schneller.“

Quantenkommunikation im bestehenden Glasfaser-Netz

„Es gibt heute verschiedene Ansätze, Information quantenphysikalisch zu übertragen“, sagt Dr. Clément Sayrin (ebenfalls TU Wien). „Glasfasern sind eine technologisch besonders interessante Variante – schließlich gibt es bereits ein weltweites Glasfasernetz, über das wir täglich Daten austauschen.“
An der TU Wien wurden Cäsium-Atome an eine ultradünne Glasfaser gekoppelt.

Wenn das Atom das Licht eines Lasers absorbiert, kann es von einem Zustand niedriger Energie in einen Zustand höherer Energie übergehen – vorausgesetzt, die Energie des absorbierten Photons entspricht der Energiedifferenz zwischen den beiden Zuständen. Das Problem ist dabei allerdings, dass auf diese Weise „gespeichertes“ Licht nicht kontrolliert wieder abgerufen werden kann.

Im Experiment wurde deswegen zusätzlich noch ein Kontroll-Laser verwendet, der den Zustand höherer Energie an einen dritten Atomzustand koppelt. „Durch das Zusammenspiel dieser drei Zustände kann man erreichen, dass ein Photon nicht mehr wie sonst einfach absorbiert und dann später zufällig wieder ausgesandt wird. Stattdessen wird die Information des Photons kontrolliert auf ein Ensemble von Atomen übertragen und für definierte Zeit festgehalten.“ Aus dem Lichtteilchen wird so eine kollektive Anregung von Atomen.

Nach zwei Mikrosekunden, einer Zeitspanne in der das Licht sonst bereits ungefähr einen halben Kilometer zurückgelegt hätte, wurden im Experiment die Atome mit Hilfe des Kontroll-Lasers dazu gebracht, das gespeicherte Licht wieder zurück in die Glasfaser zu senden. Die Eigenschaften der Photonen bleiben bei diesem Verfahren erhalten – eine wichtige Voraussetzung für die Quantenkommunikation.

Information von Lichtteilchen zu speichern ist ein wichtiger technologischer Schritt auf dem Weg zur Quanten-Kommunikation über große Distanzen. „Quantenphysikalisch kann man eine Verbindung zwischen Sender und Empfänger herstellen, die von außen nicht abgehört werden kann“, erklärt Arno Rauschenbeutel. „Die grundlegenden Gesetze der Quantenphysik verhindern, dass irgendjemand in diese Verbindung eingreift, ohne dass die beiden beteiligten Personen das bemerken.“

Publikation:
C. Sayrin, C. Clausen, B. Albrecht, P. Schneeweiss, A. Rauschenbeutel
Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms, Optica.
Frei zugängliche Version: arXiv:1502.01151 (2015)

Rückfragehinweise:
Dr. Christoph Clausen
Atominstiut
Technische Universität Wien
Stadionallee 2
+43-1-58801-141713
christoph.clausen@tuwien.ac.at

Prof. Arno Rauschenbeutel
Atominstitut
Vienna Center for Quantum Science and Technology
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141761
arno.rauschenbeutel@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie