Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Glasfaser, in der das Licht stehenbleibt

08.04.2015

Ein wichtiger Schritt für die Quanten-Datenübertragung gelang an der TU Wien: Photonen in einer Glasfaser können durch Atome auf die Geschwindigkeit eines Schnellzugs abgebremst und für kurze Zeit sogar gestoppt werden.

Licht ist ein sehr nützliches Instrument für die Quantenkommunikation, doch es hat einen entscheidenden Nachteil: Es bewegt sich normalerweise mit Lichtgeschwindigkeit und kann nicht festgehalten werden. Ein Forschungsteam der TU Wien hat nun gezeigt, dass sich dieses Problem beheben lässt – und zwar nicht bloß in exotischen Quantensystemen, sondern in den bereits existierenden Glasfasernetzwerken.


Atome, gekoppelt an eine Glasfaser, können das Licht in der Faser drastisch verlangsamen.

TU Wien


Durch neue Quantentechnologien soll ein weltweites Quanten-Internet möglich werden.

TU Wien

Durch die geschickte Kopplung von Atomen an die Glasfaser konnte das Licht auf 180 km/h verlangsamt werden. Es gelang sogar, das Licht für kurze Zeit komplett anzuhalten und dann wieder abzurufen. Diese Technik ist eine wichtige Voraussetzung für ein zukünftiges Glasfaser-basiertes Quanten-Internet, in dem man Quanten-Information über große Distanzen teleportieren kann.

Lichtpulse, langsamer als ein Schnellzug

Im freien Raum ist die Lichtgeschwindigkeit immer gleich groß – ungefähr 300 Millionen Meter pro Sekunde. Schickt man Licht durch ein Medium wie Glas oder Wasser, wird es durch seine Wechselwirkung mit dem Medium allerdings ein bisschen abgebremst. „Bei unserem System ist dieser Effekt extrem, weil wir gezielt eine äußerst starke Wechselwirkung zwischen Licht und Materie erzeugen“, sagt Prof. Arno Rauschenbeutel (Atominstitut der TU Wien / Vienna Center for Quantum Science and Technology). „Die Geschwindigkeit des Lichts in unserer atombesetzten Glasfaser beträgt bloß 180 km/h – der Railjet der Österreichischen Bundesbahn ist schneller.“

Quantenkommunikation im bestehenden Glasfaser-Netz

„Es gibt heute verschiedene Ansätze, Information quantenphysikalisch zu übertragen“, sagt Dr. Clément Sayrin (ebenfalls TU Wien). „Glasfasern sind eine technologisch besonders interessante Variante – schließlich gibt es bereits ein weltweites Glasfasernetz, über das wir täglich Daten austauschen.“
An der TU Wien wurden Cäsium-Atome an eine ultradünne Glasfaser gekoppelt.

Wenn das Atom das Licht eines Lasers absorbiert, kann es von einem Zustand niedriger Energie in einen Zustand höherer Energie übergehen – vorausgesetzt, die Energie des absorbierten Photons entspricht der Energiedifferenz zwischen den beiden Zuständen. Das Problem ist dabei allerdings, dass auf diese Weise „gespeichertes“ Licht nicht kontrolliert wieder abgerufen werden kann.

Im Experiment wurde deswegen zusätzlich noch ein Kontroll-Laser verwendet, der den Zustand höherer Energie an einen dritten Atomzustand koppelt. „Durch das Zusammenspiel dieser drei Zustände kann man erreichen, dass ein Photon nicht mehr wie sonst einfach absorbiert und dann später zufällig wieder ausgesandt wird. Stattdessen wird die Information des Photons kontrolliert auf ein Ensemble von Atomen übertragen und für definierte Zeit festgehalten.“ Aus dem Lichtteilchen wird so eine kollektive Anregung von Atomen.

Nach zwei Mikrosekunden, einer Zeitspanne in der das Licht sonst bereits ungefähr einen halben Kilometer zurückgelegt hätte, wurden im Experiment die Atome mit Hilfe des Kontroll-Lasers dazu gebracht, das gespeicherte Licht wieder zurück in die Glasfaser zu senden. Die Eigenschaften der Photonen bleiben bei diesem Verfahren erhalten – eine wichtige Voraussetzung für die Quantenkommunikation.

Information von Lichtteilchen zu speichern ist ein wichtiger technologischer Schritt auf dem Weg zur Quanten-Kommunikation über große Distanzen. „Quantenphysikalisch kann man eine Verbindung zwischen Sender und Empfänger herstellen, die von außen nicht abgehört werden kann“, erklärt Arno Rauschenbeutel. „Die grundlegenden Gesetze der Quantenphysik verhindern, dass irgendjemand in diese Verbindung eingreift, ohne dass die beiden beteiligten Personen das bemerken.“

Publikation:
C. Sayrin, C. Clausen, B. Albrecht, P. Schneeweiss, A. Rauschenbeutel
Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms, Optica.
Frei zugängliche Version: arXiv:1502.01151 (2015)

Rückfragehinweise:
Dr. Christoph Clausen
Atominstiut
Technische Universität Wien
Stadionallee 2
+43-1-58801-141713
christoph.clausen@tuwien.ac.at

Prof. Arno Rauschenbeutel
Atominstitut
Vienna Center for Quantum Science and Technology
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141761
arno.rauschenbeutel@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten