Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die dunkle Seite von Sternhaufen: VLT entdeckt neue Art von Kugelsternhaufen

13.05.2015

Beobachtungen mit dem Very Large Telescope der ESO in Chile haben eine neue Klasse „dunkler“ Kugelsternhaufen um die riesige Galaxie Centaurus A zu Tage gebracht.

Diese mysteriösen Objekte sehen normalen Sternhaufen zwar ähnlich, enthalten aber deutlich mehr Masse und könnten entweder unerwartet große Mengen an dunkler Materie enthalten oder tragen massereiche Schwarze Löcher in sich – keines von beiden hätte man erwartet, geschweige denn verstanden.


This huge elliptical galaxy NGC 5128 (also known as Centaurus A) is the closest such galaxy to the Earth, at a distance of about 12 million light-years. Observations with ESO’s Very Large Telescope in Chile have discovered a new class of “dark” globular star clusters around this galaxy. These are marked in red. Normal globulars are marked in blue and globulars showing similar properties to dwarf galaxies are in green. The dark globulars appear very similar to other globulars around this galaxy but contain much more mass.

Credit: ESO/Digitized Sky Survey. Acknowledgement: Davide de Martin

Kugelsternhaufen sind riesige kugelförmige Ansammlungen von Tausenden von Sternen in Umlaufbahnen um den Großteil aller Galaxien. Sie zählen zu den ältesten bekannten Sternensystemen im Universum und haben beinahe die gesamte Zeitspanne der Entstehung und Entwicklung von Galaxien überlebt.

Matt Taylor, Doktorand an der Pontificia Universidad Catolica de Chile in Santiago und Empfänger eines ESO-Stipendiums, ist Erstautor einer neuen Studie dazu: „Kugelsternhaufen und die darin enthaltenen Sterne sind der Schlüssel zum Verständnis von Entstehung und Entwicklung von Galaxien. Über Jahrzehnte hinweg dachten Astronomen, dass all die Sterne in einem Kugelsternhaufen dasselbe Alter und dieselbe chemische Zusammensetzung haben – aber wir wissen jetzt, dass es auch merkwürdigere und kompliziertere Kreaturen unter ihnen gibt.“

Die elliptische Galaxie Centaurus A (die auch als NGC 5128 bezeichnet wird) ist die der Milchstraße am nächsten gelegene Riesengalaxie und steht unter Verdacht, nicht weniger als 2000 Kugelsternhaufen zu beherbergen. Viele dieser Kugelsternhaufen sind deutlich heller und massereicher als jene etwa 150, die die Milchstraße umkreisen.

Anhand einer Stichprobe von 125 Kugelsternhaufen um Centaurus A führten Matt Taylor und sein Team mit dem FLAMES-Spektrografen am Very Large Telescope der ESO am Paranal-Observatorium im Norden Chiles die bis dahin genauesten Untersuchungen dieser Objekte durch [1].

Anhand dieser Beobachtungsdaten konnten sie die Massen der Sternhaufen ableiten [2] und verglichen dieses Ergebnis mit der Helligkeit, mit der jeder einzelne der Haufen leuchtet.

Für einen Großteil der Sternhaufen konnten sie keinen überraschenden Zusammenhang feststellen. Wie erwartet hatten die helleren auch eine größere Masse – wenn ein Haufen mehr Sterne enthält, hat er eine größere Gesamthelligkeit und somit auch eine größere Gesamtmasse. Bei einigen dieser Kugelsternhaufen zeigte sich allerdings ein seltsames Phänomen: Sie waren um ein Vielfaches massereicher als sie es entsprechend ihrer Helligkeit hätten sein dürfen. Noch mysteriöser scheint die Tatsache, dass je massereicher diese ungewöhnlichen Haufen waren, desto größer war der Anteil an Materie, der nicht sichtbar war. Irgendetwas in diesen Sternhaufen ist also unsichtbar, verborgen und massereich. Aber was?

Es gibt verschiedene Lösungsansätze dazu: Vielleicht enthalten die dunklen Sternhaufen Schwarze Löcher oder andere dunkle stellare Überreste in ihren Kernen? Das könnte zwar einen Teil der versteckten Masse erklären, allerdings könne das kein vollständiger Erklärungsansatz sein, erkannte das Team. Wie sieht es also mit dunkler Materie aus?

Koautor Thomas Puzia ergänzt: „Unsere Entdeckungen von Sternhaufen, die verglichen mit ihrer darin enthaltenen Anzahl an Sternen eine unerwartet hohe Masse haben, deuten darauf hin, dass es verschiedene Arten von Sternhaufen gibt, die sich in ihrer Entstehungsgeschichte unterscheiden. Auf den ersten Blick erscheinen manche Sternhaufen wie 08/15-Haufen, aber im wahrsten Sinne des Wortes könnte mehr in ihnen stecken.“

Diese Objekte bleiben weiterhin ein Rätsel. Das Team beschäftigt sich in einer weiteren Studie mit der Untersuchung von Kugelsternhaufen in anderen Galaxien und es deutet einiges darauf hin, dass solche dunklen Haufen auch anderswo vorhanden sind.

Matt Taylor fasst die Situation wie folgt zusammen: Wir sind über eine neue und mysteriöse Art von Sternhaufen gestolpert! Das zeigt, dass wir immer noch viel über sämtliche Aspekte der Entstehung von Kugelsternhaufen zu lernen haben.“

Endnoten

[1] Bis heute haben Astronomen Sternhaufen nur in der Lokalen Gruppe so detailliert untersucht. Die vergleichsweise geringe Entfernung macht dort direkte Messungen ihrer Massen möglich. Indem man das VLT und FLAMES an seine Grenzen brachte, konnte die Masse von Kugelsternhaufen bei NGC 5128 – einer isolierten, massereichen elliptischen Galaxie etwas außerhalb der lokalen Gruppe ca. 12 Millionen Lichtjahre entfernt – in einer komplett anderen Umgebung abgeschätzt werden.

2] Die FLAMES-Beobachtungen liefern Informationen über die Bewegungen von Sternen innerhalb des Haufens. Diese Bahninformationen hängen von der Stärke des Gravitationsfeldes ab und können deshalb dazu genutzt werden, die Masse des Haufens abzuleiten – Astronomen nennen solche Schätzungen dynamische Massen. Die Lichtsammelleistung eines 8,2-Meter-Teleskops beim VLT-Hauptteleskop und die Fähigkeit von FLAMES mehr als 100 Haufen gleichzeitig beobachten zu können, war der Schlüssel dazu, die für die Untersuchung notwendigen Daten sammeln zu können.

Weitere Informationen

Die hier präsentierten Forschungsergebnisse von M. Taylor et al. erscheinen unter dem Titel "Observational evidence for a dark side to NGC 5128’s globular cluster system" in der Fachzeitschrift The Astrophysical Journal.

Die beteiligten Wissenschaftler sind Matthew A. Taylor (Pontificia Universidad Catolica de Chile, Santiago; ESO, Santiago de Chile), Thomas H. Puzia (Pontificia Universidad Catolica de Chile), Matias Gomez (Universidad Andres Bello, Santiago de Chile) und Kristin A. Woodley (University of California, Santa Cruz, USA).

Die Europäische Südsternwarte (engl. European Southern Observatory, kurz ESO) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch 16 Länder: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Großbritannien, Italien, die Niederlande, Österreich, Polen, Portugal, Spanien, Schweden, die Schweiz und die Tschechische Republik. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO verfügt über drei weltweit einzigartige Beobachtungsstandorte in Chile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist einer der Hauptpartner bei ALMA, dem größten astronomischen Projekt überhaupt. Auf dem Cerro Armazones unweit des Paranal errichtet die ESO zur Zeit das European Extremely Large Telescope (E-ELT) mit 39 Metern Durchmesser, das einmal das größte optische Teleskop der Welt werden wird.

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Kontaktinformationen

Carolin Liefke
ESO Science Outreach Network - Haus der Astronomie
Heidelberg, Deutschland
Tel: 06221 528 226
E-Mail: eson-germany@eso.org

Matthew A. Taylor
Pontificia Universidad Catolica de Chile
Santiago, Chile
Tel: +56-9-91912386
E-Mail: mataylor5128@gmail.com

Thomas H. Puzia
Pontificia Universidad Catolica de Chile
Santiago, Chile
Tel: +56-9-89010007
E-Mail: tpuzia@gmail.com

Richard Hook
ESO, Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Mobil: +49 151 1537 3591
E-Mail: rhook@eso.org

Connect with ESO on social media

Dies ist eine Übersetzung der ESO-Pressemitteilung eso1519.

Dr. Carolin Liefke | ESO-Media-Newsletter
Weitere Informationen:
http://www.eso.org/public/germany/news/eso1519/?nolang

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics