Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der seltsame Fall des verschollenen Zwerges

18.02.2015

Das neue Instrument SPHERE zeigt sein Können

Bislang gingen Astronomen davon aus, dass ein Brauner Zwerg den ungewöhnlichen Doppelstern V471 Tauri begleitet. Das neue Instrument SPHERE am Very Large Telescope der ESO hat ihnen den nun bisher besten Blick auf die Umgebung dieses faszinierenden Objekts geliefert und sie fanden — nichts.


Das SPHERE-Instrument ist hier kurz nach seiner Anbringung am VLT-Hauptteleskop 3 der ESO zu sehen. Das Instrument selbst ist der schwarze Kasten, der sich auf der Plattform an der Seite des Teleskops befindet.

Herkunftsnachweis: ESO/J. Girard

Das überraschende Fehlen dieses mit großer Sicherheit vorhergesagten Braunen Zwerges bedeutet, dass die herkömmliche Erklärung für das merkwürdige Verhalten von V471 Tauri falsch sein muss. Das unerwartete Ergebnis wird in der ersten Veröffentlichung überhaupt beschrieben, die auf Beobachtungen von SPHERE beruht.

Manche Sternpaare bestehen aus zwei normalen Sternen mit nur geringfügig unterschiedlichen Massen. Wenn der Stern mit der etwas höheren Masse altert und sich ausdehnt, um zu einem Roten Riesen zu werden, geht Materie von diesem Stern zum anderen über und umgibt schließlich beide Sterne mit einer riesigen gasförmigen Hülle. Sobald sich diese Wolke auflöst, nähern sich beide Sterne einander an und es entsteht ein sehr kompaktes Paar aus einem Weißen Zwerg und einem zusätzlichen gewöhnlichen Stern [1].

Ein solches Sternpaar trägt den Namen V471 Tauri [2]. Es ist Teil des Sternhaufens der Hyaden im Sternbild Stier und schätzungsweise um die 600 Millionen Jahre alt und etwa 163 Lichtjahre von der Erde entfernt. Beide Sterne liegen sehr dicht beieinander und umkreisen sich gegenseitig alle 12 Stunden. Zweimal pro Umrundung zieht ein Stern von der Erde aus gesehen vor dem anderen vorbei — was zu regelmäßigen Änderungen in der Helligkeit des Sternpaares führt, da sie sich gegenseitig verdunkeln.

Das Team um den Astronomen Adam Hardy von der Universidad Valparaíso in Chile verwendete zunächst das ULTRACAM-System am New Technology Telescope der ESO, um diese Helligkeitsänderungen sehr präzise zu vermessen. Die Zeiten der Verfinsterungen wurden dabei mit einer Genauigkeit von unter zwei Sekunden bestimmt.

Die Verdunklungszeiten waren zwar nicht gleichmäßig, konnten aber mit der Annahme, dass es einen Braunen Zwerg gibt, der beide Sterne umkreist und dessen Anziehungskraft die Umlaufbahn der Sterne stört, gut erklärt werden. Sie fanden ebenso Hinweise auf ein zweites kleineres Begleitobjekt.

Bis heute ist es allerdings unmöglich gewesen, einen lichtschwachen Brauen Zwerg mit so geringem Abstand zu viel helleren Sternen tatsächlich abzubilden. Das neu installierte SPHERE-Instrument am Very Large Telescope der ESO erlaubte den Astronomen zum ersten Mal genauer an die Stelle zu schauen, an der sie Begleiter in Form einen Braunen Zwerges erwarteten. Gesehen haben sie allerdings nichts, obwohl die hochauflösenden Bilder von SPHERE ihn leicht hätten enttarnen sollen [3].

„Es gibt viele Veröffentlichungen, in denen die Existenz solcher zirkumbinären Objekte angenommen wird, aber die Ergebnisse hier liefern einen vernichtenden Beweis gegen diese Hypothese“, merkt Adam Hardy an.

Wenn es kein umlaufendes Objekt gibt, was verursacht dann die merkwürdigen Änderungen in der Umlaufbahn des Doppelsterns? Mehrere Ansätze wurden vorgeschlagen und während einige bereits ausgeschlossen werden konnten, wäre es möglich, dass dieser Effekt durch Veränderungen im Magnetfeld des größeren der beiden Sterne verursacht wird [4], ähnlich kleineren Veränderungen, die bei der Sonne beobachtet werden können.

„Eine Untersuchung wie diese war seit Jahren notwendig, aber konnte erst mit dem Aufkommen solch leistungsstarker neuer Instrumente wie SPHERE möglich gemacht werden. So funktioniert Wissenschaft: Beobachtungen mit neuer Technologie können frühere Ideen entweder bestätigen oder widerlegen, wie es hier der Fall war. Für dieses tolle Instrument ist dies ein großartiger Start ins Beobachtungsleben“, fasst Hardy zusammen.

Endnoten


[1] Solche Doppelsternsysteme bezeichnet man auch als Post-Common-Envelope-Doppelsterne bekannt.


[2] Der Name bedeutet, dass das Objekt der 471. in seiner Helligkeit veränderliche Stern ist, der im Sternbild Stier bestimmt wurde. Wie genauere Untersuchungen zeigen, kommen die Helligkeitsänderungen in diesem Fall durch die Doppelnatur des Systems zustande.


[3] Die Bilder von SPHERE sind so hochauflösend, dass sie in der Lage wären, einen Begleiter wie einen Braunen Zwerg zu finden, der 70.000 mal lichtschwächer als der Hauptstern und nur 0.26 Bogensekunden von ihm entfernt ist. Der in diesem Fall erwartete Begleiter in Form eines Braunen Zwerges wurde als viel heller vorhergesagt.


[4] Dieser Effekt wird als Applegate-Mechanismus bezeichnet und führt zu regelmäßigen Änderungen in der Form des Sterns, welche wiederum zu Veränderungen in der scheinbaren Helligkeit des Doppelsterns führt, wie sie von der Erde aus erscheint.

Weitere Informationen

Die hier vorgestellten Ergebnisse von A. Hardy et al. erscheinen am 18. Februar 2015 unter dem Titel "The First Science Results from SPHERE: Disproving the Predicted Brown Dwarf around V471 Tau" in den Astrophysical Journal Letters .

Die beteiligten wissenshcaftler sind A. Hardy (Universidad Valparaíso, Valparaíso, Chile; Millennium Nucleus "Protoplanetary Disks in ALMA Early Science", Teil des Millennium Science Initiative Program, Universidad Valparaíso), M.R. Schreiber (Universidad Valparaíso), S.G. Parsons (Universidad Valparaíso), C. Caceres (Universidad Valparaíso), G. Retamales (Universidad Valparaíso), Z. Wahhaj (ESO, Santiago de Chile), D. Mawet (ESO, Santiago de Chile), H. Canovas (Universidad Valparaíso), L. Cieza (Universidad Diego Portales, Santiago, Chile; Universidad Valparaíso), T.R. Marsh (University of Warwick, Coventry, Großbritannien), M.C.P. Bours (University of Warwick), V.S. Dhillon (University of Sheffield, Sheffield, Großbritannien) und A. Bayo (Universidad Valparaíso).

Die Europäische Südsternwarte (engl. European Southern Observatory, kurz ESO) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch 16 Länder: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Großbritannien, Italien, die Niederlande, Österreich, Polen, Portugal, Spanien, Schweden, die Schweiz und die Tschechische Republik. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO verfügt über drei weltweit einzigartige Beobachtungsstandorte in Chile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist einer der Hauptpartner bei ALMA, dem größten astronomischen Projekt überhaupt. Auf dem Cerro Armazones unweit des Paranal errichtet die ESO zur Zeit das European Extremely Large Telescope (E-ELT) mit 39 Metern Durchmesser, das einmal das größte optische Teleskop der Welt werden wird.

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Kontaktinformationen

Carolin Liefke
ESO Science Outreach Network - Haus der Astronomie
Heidelberg, Deutschland
Tel: 06221 528 226
E-Mail: eson-germany@eso.org

Adam Hardy
Universidad Valparaíso
Valparaíso, Chile
Tel: +56 32 2508457
E-Mail: adam.hardy@postgrado.uv.cl

Matthias Schreiber
Universidad de Valparaíso
Valparaíso, Chile
Tel: +56 32 2399279
E-Mail: matthias@dfa.uv.cl

Richard Hook
ESO education and Public Outreach Department
Garching bei München, Germany
Tel: +49 89 3200 6655
Mobil: +49 151 1537 3591
E-Mail: rhook@eso.org

Dies ist eine Übersetzung der ESO-Pressemitteilung eso1506.

Dr. Carolin Liefke | ESO-Media-Newsletter
Weitere Informationen:
http://www.eso.org/public/germany/news/eso1506/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten