Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das atomare Bild des Magnetismus

01.08.2014

Mit der genauen Analyse magnetischer Strukturen wird es möglich, die Natur der Hochtemperatursupraleiter zu ergründen

Supraleiter wecken viele Hoffnungen, besonders bei den Materialien, die bereits bei recht hohen Temperaturen ihren elektrischen Widerstand verlieren – ob für besonders leistungsfähige Bildgebungsverfahren in der Medizin, für die Energieversorgung oder für Magnetschwebebahnen in der Verkehrstechnik.


Magnetische Ordnung von Eisentellurid, abgebildet mit einem Tieftemperatur-Rastertunnelmikroskop. Der vergrößerte Abschnitt zeigt die atomare Struktur.

© Peter Wahl, University of St Andrews und Max-Planck-Institut für Festkörperforschung

Hochtemperatursupraleiter, die den Namen verdienen, könnten viele Anwendungen finden. Doch Ihre Faszination steht in keinem Verhältnis dazu, wie rätselhaft ihre Natur noch ist; das behindert bisher die Suche nach widerstandslosen Leitern für praxisnahe Temperaturen.Instituts für Festkörperforschung aus Stuttgart und Augsburg leisten einen Beitrag, die Funktionsweise von eisenbasierten Supraleitern und die Rolle des Magnetismus dabei näher zu verstehen.

Sie haben zum ersten Mal die magnetische Struktur eines sogenannten stark korrelierten Elektronensystems, hier von Eisentellurid, auf atomarer Skala abgebildet. Zuvor gab nur die Neutronenstreuung Auskunft über die magnetische Struktur, die aber ein ungenaues Bild lieferte. Eisentellurid ist eine Muttersubstanz des supraleitenden Eisentelluridselenids. Die Forscher hoffen jetzt, die Methode auch auf Materialien, die sowohl supraleitende als auch magnetische Eigenschaften zeigen, anwenden zu können.

Stoffe wie die Kupferoxid-Keramiken oder die Eisen-Arsen-Verbindungen gelten als Hochtemperatursupraleiter: Sie müssen nicht ganz so stark gekühlt werden wie andere Stoffe, um in den supraleitenden Zustand überzugehen. Warum ist das so? Bislang existieren Hypothesen, aber keine gesicherte Beschreibung der genauen Vorgänge.

„Eine zentrale Frage, die sich viele Forschungsgruppen stellen, ist die nach dem Verhältnis zwischen magnetischen und supraleitenden Eigenschaften der Materialen“, sagt Peter Wahl vom Max-Planck-Institut für Festkörperforschung, „können beide Effekte an ein und derselben Stelle auftreten? Oder schließen sie sich gegenseitig aus?“ Physiker halten es für möglich, dass die magnetischen Eigenschaften der Stoffe gar Ursache für ihre Supraleitfähigkeit sind.

Um das zu überprüfen, wird schon lange nach einem Verfahren gesucht, die magnetischen Strukturen in dieser Art Systemen, den stark korrelierten Elektronensystemen, Atom für Atom zu analysieren. Die Methode der Neutronenstreuung ist bisher das Mittel der Wahl für Untersuchungen der magnetischen Ordnung, allerdings lieferte sie nur räumlich gemittelte Einblicke in die magnetische Struktur und konnte keine Genauigkeit auf atomarer Skala erreichen.

Jetzt bedienten sich die Max-Planck-Forscher aus Stuttgart eines sogenannten spin-polarisierten Rastertunnelmikroskops, das die Orientierung des Elektronenspins, also des magnetischen Moments, an einem einzelnen Atom abbilden kann. Die Methode ist nicht neu, wurde bisher allerdings nur auf metallische Oberflächen und Nanostrukturen angewendet. Allerdings war bisher nicht ganz klar, ob sich mit der Methode auch die magnetische Strutur eines stark korrelierten Systems wie des Eisentellurids aufklären ließe. Denn die oberste Schicht dieses Materials besteht aus Tellur, einem Element, das selbst nicht magnetisch ist.

Die Wissenschaftler zeigten nun, dass das spin-polarisierte Rastertunnelmikroskop trotz der äußeren Tellurschicht auch auf stark korrelierte Elektronensysteme anwendbar ist. Das darunter liegende Eisengitter hat wohl einen zu großen Einfluss. In der Aufnahme des Rastertunnelmikroskops sind deutlich schmale Längsstreifen zu erkennen, die aus der antiferromagnetischen Ordnung im Eisentellurid resultieren. Innerhalb der Streifen sind alle magnetischen Momente gleich orientiert, auf dem daneben liegenden Streifen entgegengesetzt.

Eine experimentelle Herausforderung bestand darin, die Spitze des Mikroskops für die spin-polarisierten Untersuchungen zu magnetisieren. Für Studien an Nanostrukturen auf Oberflächen erreichten Forscher dies vor allem, indem sie die Spitze des Mikroskops erhitzten und mit einem magnetischen Material bedampften. Um dieses aufwändige Verfahren zu umgehen, behalfen sich die Wissenschaftler eines Tricks: Sie sammelten  mit der Spitze des Mikroskops einzelne Eisenatome auf, die sich auf der Oberfläche des untersuchten Eisentellurids befinden, und magnetisierten die Spitze auf diese Weise.

Einen interessanten Fund machten die Forscher bei der Temperatur, die nötig ist, damit sich die antiferromagnetische Struktur ausbildet. Im Experiment lag diese bei ungefähr minus 227 Grad Celsius, rund 20 Grad unter der normalerweise notwendigen Temperatur. Der Grund dafür liegt darin, dass die Forscher im Experiment nur die Oberfläche des Eisentellurids betrachteten. Im Vergleich zu Eisentellurid-Lagen aus der Mitte des Kristalls fallen hier die Wechselwirkungen mit einer darüber liegenden Atomschicht weg. Folglich können sich die magnetischen Momente in ihrer Ordnung nicht so gut gegenseitig stabilisieren – die magnetische Struktur bildet sich erst bei einer niedrigeren Temperatur.

Außerdem stellte die Forschungsgruppe um Peter Wahl fest, dass die magnetische Ordnung bei einem höheren Anteil von Eisenatomen komplexer wird: Die Längsstreifen lösen sich teilweise auf und werden von Querstreifen überlagert. Anscheinend bringen die überschüssigen Atome und ihre magnetischen Momente die magnetische und kristalline Ordnung durcheinander. „Hier gibt es noch viel Forschungsspielraum“, sagt Peter Wahl, „ich glaube, dass sich in nächster Zeit ein richtiger Boom entwickeln wird, Gruppen werden an anderen, supraleitenden Materialien ähnliche Experimente durchführen.“ Das Verständnis der Eigenschaften solcher Stoffe wäre der erste Schritt zu effizienterer und irgendwann vielleicht sogar alltagstauglicher Supraleitertechnologie.

Ansprechpartner

Dr. Peter Wahl

Max-Planck-Institut für Festkörperforschung, Stuttgart

Telefon: +49 711 689-1653

 

Originalpublikation

 
Wahl, Peter et al.
Real-Space Imaging of the Atomic-Scale Magnetic Structure of Fe1+yTe

Science Xpress, 31.07.14

Dr. Peter Wahl | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden
19.10.2017 | Forschungsverbund Berlin e.V.

nachricht Gravitationswellen: Sternenglanz für Jenaer Forscher
19.10.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Aufräumen? Nicht ohne Helfer

19.10.2017 | Biowissenschaften Chemie

Neue Biotinte für den Druck gewebeähnlicher Strukturen

19.10.2017 | Materialwissenschaften

Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden

19.10.2017 | Physik Astronomie