Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das atomare Bild des Magnetismus

01.08.2014

Mit der genauen Analyse magnetischer Strukturen wird es möglich, die Natur der Hochtemperatursupraleiter zu ergründen

Supraleiter wecken viele Hoffnungen, besonders bei den Materialien, die bereits bei recht hohen Temperaturen ihren elektrischen Widerstand verlieren – ob für besonders leistungsfähige Bildgebungsverfahren in der Medizin, für die Energieversorgung oder für Magnetschwebebahnen in der Verkehrstechnik.


Magnetische Ordnung von Eisentellurid, abgebildet mit einem Tieftemperatur-Rastertunnelmikroskop. Der vergrößerte Abschnitt zeigt die atomare Struktur.

© Peter Wahl, University of St Andrews und Max-Planck-Institut für Festkörperforschung

Hochtemperatursupraleiter, die den Namen verdienen, könnten viele Anwendungen finden. Doch Ihre Faszination steht in keinem Verhältnis dazu, wie rätselhaft ihre Natur noch ist; das behindert bisher die Suche nach widerstandslosen Leitern für praxisnahe Temperaturen.Instituts für Festkörperforschung aus Stuttgart und Augsburg leisten einen Beitrag, die Funktionsweise von eisenbasierten Supraleitern und die Rolle des Magnetismus dabei näher zu verstehen.

Sie haben zum ersten Mal die magnetische Struktur eines sogenannten stark korrelierten Elektronensystems, hier von Eisentellurid, auf atomarer Skala abgebildet. Zuvor gab nur die Neutronenstreuung Auskunft über die magnetische Struktur, die aber ein ungenaues Bild lieferte. Eisentellurid ist eine Muttersubstanz des supraleitenden Eisentelluridselenids. Die Forscher hoffen jetzt, die Methode auch auf Materialien, die sowohl supraleitende als auch magnetische Eigenschaften zeigen, anwenden zu können.

Stoffe wie die Kupferoxid-Keramiken oder die Eisen-Arsen-Verbindungen gelten als Hochtemperatursupraleiter: Sie müssen nicht ganz so stark gekühlt werden wie andere Stoffe, um in den supraleitenden Zustand überzugehen. Warum ist das so? Bislang existieren Hypothesen, aber keine gesicherte Beschreibung der genauen Vorgänge.

„Eine zentrale Frage, die sich viele Forschungsgruppen stellen, ist die nach dem Verhältnis zwischen magnetischen und supraleitenden Eigenschaften der Materialen“, sagt Peter Wahl vom Max-Planck-Institut für Festkörperforschung, „können beide Effekte an ein und derselben Stelle auftreten? Oder schließen sie sich gegenseitig aus?“ Physiker halten es für möglich, dass die magnetischen Eigenschaften der Stoffe gar Ursache für ihre Supraleitfähigkeit sind.

Um das zu überprüfen, wird schon lange nach einem Verfahren gesucht, die magnetischen Strukturen in dieser Art Systemen, den stark korrelierten Elektronensystemen, Atom für Atom zu analysieren. Die Methode der Neutronenstreuung ist bisher das Mittel der Wahl für Untersuchungen der magnetischen Ordnung, allerdings lieferte sie nur räumlich gemittelte Einblicke in die magnetische Struktur und konnte keine Genauigkeit auf atomarer Skala erreichen.

Jetzt bedienten sich die Max-Planck-Forscher aus Stuttgart eines sogenannten spin-polarisierten Rastertunnelmikroskops, das die Orientierung des Elektronenspins, also des magnetischen Moments, an einem einzelnen Atom abbilden kann. Die Methode ist nicht neu, wurde bisher allerdings nur auf metallische Oberflächen und Nanostrukturen angewendet. Allerdings war bisher nicht ganz klar, ob sich mit der Methode auch die magnetische Strutur eines stark korrelierten Systems wie des Eisentellurids aufklären ließe. Denn die oberste Schicht dieses Materials besteht aus Tellur, einem Element, das selbst nicht magnetisch ist.

Die Wissenschaftler zeigten nun, dass das spin-polarisierte Rastertunnelmikroskop trotz der äußeren Tellurschicht auch auf stark korrelierte Elektronensysteme anwendbar ist. Das darunter liegende Eisengitter hat wohl einen zu großen Einfluss. In der Aufnahme des Rastertunnelmikroskops sind deutlich schmale Längsstreifen zu erkennen, die aus der antiferromagnetischen Ordnung im Eisentellurid resultieren. Innerhalb der Streifen sind alle magnetischen Momente gleich orientiert, auf dem daneben liegenden Streifen entgegengesetzt.

Eine experimentelle Herausforderung bestand darin, die Spitze des Mikroskops für die spin-polarisierten Untersuchungen zu magnetisieren. Für Studien an Nanostrukturen auf Oberflächen erreichten Forscher dies vor allem, indem sie die Spitze des Mikroskops erhitzten und mit einem magnetischen Material bedampften. Um dieses aufwändige Verfahren zu umgehen, behalfen sich die Wissenschaftler eines Tricks: Sie sammelten  mit der Spitze des Mikroskops einzelne Eisenatome auf, die sich auf der Oberfläche des untersuchten Eisentellurids befinden, und magnetisierten die Spitze auf diese Weise.

Einen interessanten Fund machten die Forscher bei der Temperatur, die nötig ist, damit sich die antiferromagnetische Struktur ausbildet. Im Experiment lag diese bei ungefähr minus 227 Grad Celsius, rund 20 Grad unter der normalerweise notwendigen Temperatur. Der Grund dafür liegt darin, dass die Forscher im Experiment nur die Oberfläche des Eisentellurids betrachteten. Im Vergleich zu Eisentellurid-Lagen aus der Mitte des Kristalls fallen hier die Wechselwirkungen mit einer darüber liegenden Atomschicht weg. Folglich können sich die magnetischen Momente in ihrer Ordnung nicht so gut gegenseitig stabilisieren – die magnetische Struktur bildet sich erst bei einer niedrigeren Temperatur.

Außerdem stellte die Forschungsgruppe um Peter Wahl fest, dass die magnetische Ordnung bei einem höheren Anteil von Eisenatomen komplexer wird: Die Längsstreifen lösen sich teilweise auf und werden von Querstreifen überlagert. Anscheinend bringen die überschüssigen Atome und ihre magnetischen Momente die magnetische und kristalline Ordnung durcheinander. „Hier gibt es noch viel Forschungsspielraum“, sagt Peter Wahl, „ich glaube, dass sich in nächster Zeit ein richtiger Boom entwickeln wird, Gruppen werden an anderen, supraleitenden Materialien ähnliche Experimente durchführen.“ Das Verständnis der Eigenschaften solcher Stoffe wäre der erste Schritt zu effizienterer und irgendwann vielleicht sogar alltagstauglicher Supraleitertechnologie.

Ansprechpartner

Dr. Peter Wahl

Max-Planck-Institut für Festkörperforschung, Stuttgart

Telefon: +49 711 689-1653

 

Originalpublikation

 
Wahl, Peter et al.
Real-Space Imaging of the Atomic-Scale Magnetic Structure of Fe1+yTe

Science Xpress, 31.07.14

Dr. Peter Wahl | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal mit neuer Push-in-Leiteranschlussklemme - Kontakte im Handumdrehen

26.04.2017 | HANNOVER MESSE

Plastik – nicht nur Müll

26.04.2017 | Ökologie Umwelt- Naturschutz

Seminar zu Einblicken in die unterschiedlichen Ebenen des 3D-Druckens und wirtschaftlichen Nutzungsmöglichkeiten - 2017

26.04.2017 | Seminare Workshops