Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das atomare Bild des Magnetismus

01.08.2014

Mit der genauen Analyse magnetischer Strukturen wird es möglich, die Natur der Hochtemperatursupraleiter zu ergründen

Supraleiter wecken viele Hoffnungen, besonders bei den Materialien, die bereits bei recht hohen Temperaturen ihren elektrischen Widerstand verlieren – ob für besonders leistungsfähige Bildgebungsverfahren in der Medizin, für die Energieversorgung oder für Magnetschwebebahnen in der Verkehrstechnik.


Magnetische Ordnung von Eisentellurid, abgebildet mit einem Tieftemperatur-Rastertunnelmikroskop. Der vergrößerte Abschnitt zeigt die atomare Struktur.

© Peter Wahl, University of St Andrews und Max-Planck-Institut für Festkörperforschung

Hochtemperatursupraleiter, die den Namen verdienen, könnten viele Anwendungen finden. Doch Ihre Faszination steht in keinem Verhältnis dazu, wie rätselhaft ihre Natur noch ist; das behindert bisher die Suche nach widerstandslosen Leitern für praxisnahe Temperaturen.Instituts für Festkörperforschung aus Stuttgart und Augsburg leisten einen Beitrag, die Funktionsweise von eisenbasierten Supraleitern und die Rolle des Magnetismus dabei näher zu verstehen.

Sie haben zum ersten Mal die magnetische Struktur eines sogenannten stark korrelierten Elektronensystems, hier von Eisentellurid, auf atomarer Skala abgebildet. Zuvor gab nur die Neutronenstreuung Auskunft über die magnetische Struktur, die aber ein ungenaues Bild lieferte. Eisentellurid ist eine Muttersubstanz des supraleitenden Eisentelluridselenids. Die Forscher hoffen jetzt, die Methode auch auf Materialien, die sowohl supraleitende als auch magnetische Eigenschaften zeigen, anwenden zu können.

Stoffe wie die Kupferoxid-Keramiken oder die Eisen-Arsen-Verbindungen gelten als Hochtemperatursupraleiter: Sie müssen nicht ganz so stark gekühlt werden wie andere Stoffe, um in den supraleitenden Zustand überzugehen. Warum ist das so? Bislang existieren Hypothesen, aber keine gesicherte Beschreibung der genauen Vorgänge.

„Eine zentrale Frage, die sich viele Forschungsgruppen stellen, ist die nach dem Verhältnis zwischen magnetischen und supraleitenden Eigenschaften der Materialen“, sagt Peter Wahl vom Max-Planck-Institut für Festkörperforschung, „können beide Effekte an ein und derselben Stelle auftreten? Oder schließen sie sich gegenseitig aus?“ Physiker halten es für möglich, dass die magnetischen Eigenschaften der Stoffe gar Ursache für ihre Supraleitfähigkeit sind.

Um das zu überprüfen, wird schon lange nach einem Verfahren gesucht, die magnetischen Strukturen in dieser Art Systemen, den stark korrelierten Elektronensystemen, Atom für Atom zu analysieren. Die Methode der Neutronenstreuung ist bisher das Mittel der Wahl für Untersuchungen der magnetischen Ordnung, allerdings lieferte sie nur räumlich gemittelte Einblicke in die magnetische Struktur und konnte keine Genauigkeit auf atomarer Skala erreichen.

Jetzt bedienten sich die Max-Planck-Forscher aus Stuttgart eines sogenannten spin-polarisierten Rastertunnelmikroskops, das die Orientierung des Elektronenspins, also des magnetischen Moments, an einem einzelnen Atom abbilden kann. Die Methode ist nicht neu, wurde bisher allerdings nur auf metallische Oberflächen und Nanostrukturen angewendet. Allerdings war bisher nicht ganz klar, ob sich mit der Methode auch die magnetische Strutur eines stark korrelierten Systems wie des Eisentellurids aufklären ließe. Denn die oberste Schicht dieses Materials besteht aus Tellur, einem Element, das selbst nicht magnetisch ist.

Die Wissenschaftler zeigten nun, dass das spin-polarisierte Rastertunnelmikroskop trotz der äußeren Tellurschicht auch auf stark korrelierte Elektronensysteme anwendbar ist. Das darunter liegende Eisengitter hat wohl einen zu großen Einfluss. In der Aufnahme des Rastertunnelmikroskops sind deutlich schmale Längsstreifen zu erkennen, die aus der antiferromagnetischen Ordnung im Eisentellurid resultieren. Innerhalb der Streifen sind alle magnetischen Momente gleich orientiert, auf dem daneben liegenden Streifen entgegengesetzt.

Eine experimentelle Herausforderung bestand darin, die Spitze des Mikroskops für die spin-polarisierten Untersuchungen zu magnetisieren. Für Studien an Nanostrukturen auf Oberflächen erreichten Forscher dies vor allem, indem sie die Spitze des Mikroskops erhitzten und mit einem magnetischen Material bedampften. Um dieses aufwändige Verfahren zu umgehen, behalfen sich die Wissenschaftler eines Tricks: Sie sammelten  mit der Spitze des Mikroskops einzelne Eisenatome auf, die sich auf der Oberfläche des untersuchten Eisentellurids befinden, und magnetisierten die Spitze auf diese Weise.

Einen interessanten Fund machten die Forscher bei der Temperatur, die nötig ist, damit sich die antiferromagnetische Struktur ausbildet. Im Experiment lag diese bei ungefähr minus 227 Grad Celsius, rund 20 Grad unter der normalerweise notwendigen Temperatur. Der Grund dafür liegt darin, dass die Forscher im Experiment nur die Oberfläche des Eisentellurids betrachteten. Im Vergleich zu Eisentellurid-Lagen aus der Mitte des Kristalls fallen hier die Wechselwirkungen mit einer darüber liegenden Atomschicht weg. Folglich können sich die magnetischen Momente in ihrer Ordnung nicht so gut gegenseitig stabilisieren – die magnetische Struktur bildet sich erst bei einer niedrigeren Temperatur.

Außerdem stellte die Forschungsgruppe um Peter Wahl fest, dass die magnetische Ordnung bei einem höheren Anteil von Eisenatomen komplexer wird: Die Längsstreifen lösen sich teilweise auf und werden von Querstreifen überlagert. Anscheinend bringen die überschüssigen Atome und ihre magnetischen Momente die magnetische und kristalline Ordnung durcheinander. „Hier gibt es noch viel Forschungsspielraum“, sagt Peter Wahl, „ich glaube, dass sich in nächster Zeit ein richtiger Boom entwickeln wird, Gruppen werden an anderen, supraleitenden Materialien ähnliche Experimente durchführen.“ Das Verständnis der Eigenschaften solcher Stoffe wäre der erste Schritt zu effizienterer und irgendwann vielleicht sogar alltagstauglicher Supraleitertechnologie.

Ansprechpartner

Dr. Peter Wahl

Max-Planck-Institut für Festkörperforschung, Stuttgart

Telefon: +49 711 689-1653

 

Originalpublikation

 
Wahl, Peter et al.
Real-Space Imaging of the Atomic-Scale Magnetic Structure of Fe1+yTe

Science Xpress, 31.07.14

Dr. Peter Wahl | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten