Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemischer Sensor auf einem Chip

11.06.2014

An der TU Wien ist es gelungen, mit miniaturisierter Lasertechnik auf einem wenige Millimeter großen Chip einen Sensor zu bauen, der die chemische Zusammensetzung von Flüssigkeiten messen kann.

Man kann sie nicht sehen, aber sie eignen sich perfekt zur Untersuchung von Flüssigkeiten und Gasen: Laserstrahlen im Infrarotbereich werden von unterschiedlichen Molekülen unterschiedlich stark absorbiert. Dieser Effekt wird beispielsweise bei der Messung der Sauerstoffkonzentration in Blut verwendet. An der TU Wien hat man dieses einfache Prinzip aufgegriffen und auf dieser Basis einen neuen Sensor-Prototyp realisiert.


Ein Tropfen der Flüssigkeit genügt, um die Zusammensetzung zu bestimmen.

TU Wien


Das Licht gelangt vom Laser (oben) außen am plasmonischen Wellenleiter (blaues Band) zum Detektor (unten rechts). Dabei wird es, je nach Zusammensetzung der Flüssigkeit, unterschiedlich absorbiert.

TU Wien

Speziell designte Quantenkaskaden-Laser und Lichtdetektoren werden an der TU Wien im selben Herstellungsprozess auf einem Chip gefertigt. Der Abstand zwischen Laser und Detektor beträgt nur 50 Mikrometer. Dieser wird mit einem sogenannten Oberflächenplasmonen-Wellenleiter aus Gold und Siliziumnitrid überbrückt. Dieser neue Ansatz ermöglicht die einfache und kostengünstige Produktion winziger Flüssigkeitssensoren für verschiedenste Einsatzzwecke.

Laser und Detektor

Gewöhnliche Kristall-Laser, etwa der bekannte rote Rubinlaser, bestehen aus nur einem bestimmten Material. Quantenkaskaden-Laser hingegen sind aus einer perfekt optimierten Abfolge unterschiedlicher Materialschichten zusammengesetzt. Dadurch kann man wichtige Eigenschaften des Lasers gezielt steuern, etwa die Wellenlänge seines Lichts. Wenn man an die künstlich erzeugte Schichtstruktur eine elektrische Spannung anlegt, beginnt der Laser zu leuchten. Man kann die Schichtstruktur allerdings auch in umgekehrter Richtung als Detektor verwenden: Wenn man sie mit Licht bestrahlt, entsteht ein elektrisches Signal.

An der TU Wien wurde eine Methode entwickelt, aus derselben Schichtfolge einen Laser und einen Detektor gleichzeitig auf einem Chip herzustellen – und zwar so, dass die Wellenlänge des Laserlichtes genau der Wellenlänge des Detektors entspricht. Dieses bifunktionale Material wird am Zentrum für Mikro- und Nanostrukturen der TU Wien Atomlage für Atomlage mittels Molekularstrahlepitaxie hergestellt. "Durch die gemeinsame Fertigung muss man den Laser und den Detektor nicht justieren – sie sind von Anfang an auf dem selben Chip optimal platziert", sagt Benedikt Schwarz vom Institut für Festkörperelektronik der TU Wien.

Licht-Führung vom Laser zum Detektor

Bei herkömmlichen optischen Systemen muss das erzeugte Laserlicht mit Hilfe genau justierter Linsen zum Detektor geführt werden. Auch Glasfasern können verwendet werden, allerdings transportieren sie das Licht normalerweise bloß in ihrem Inneren, bringen es also nicht in Kontakt mit der Umgebung und eignen sich dann auch nicht als Sensoren.

Bei dem neuen Bauelement, das vom Forschungsteam der TU Wien vorgestellt wurde, funktioniert die optische Verbindung zwischen Quantenkaskaden-Laser und Detektor völlig anders. Sie ist ein plasmonischer Wellenleiter, bestehend aus Gold und Siliziumoxid. „Das Licht wechselwirkt mit den Elektronen im Metall auf eine ganz besondere Weise, sodass das Licht an der Außenseite der Goldoberfläche geführt wird“, erklärt Benedikt Schwarz. „Dadurch kann das Licht von Molekülen auf dem Weg zwischen Laser und Detektor absorbiert werden.“

Der fertige Sensor-Chip kann in eine Flüssigkeit getaucht werden. Aus der Abschwächung des Lichtsignals durch absorbierende Moleküle kann dann auf die Zusammensetzung der Flüssigkeit geschlossen werden. Getestet wurde dieser Sensor mit einer Lösung aus Wasser und Alkohol. Die Wasserkonzentration lässt sich auf diese Weise bis auf 0.06% genau messen. 

Durch die Möglichkeit die Wellenlänge durch das Design der Schichtfolge einzustellen, kann das Sensorkonzept auf eine breite Palette von Molekülen wie zum Beispiel Kohlenwasserstoffe oder auch Proteine für verschiedenste Anwendungen in der chemischen, biologischen oder medizinischen Analyse angewandt werden.

Die Forschungsergebnisse wurden nun im Journal „Nature Communications“ veröffentlicht.
Nature Communications 5, 4085.
doi: 10.1038/ncomms5085

Rückfragehinweis:
Dipl.-Ing. Benedikt Schwarz
Institut für Festkörperelektronik,
Zentrum für Mikro- und Nanostrukturen
Technische Universität Wien
Floragasse 7, 1040 Wien
T: +43-1-58801-36227
benedikt.schwarz@tuwien.ac.at

Prof. Gottfried Strasser
Institut für Festkörperelektronik,
Zentrum für Mikro- und Nanostrukturen
Technische Universität Wien
Floragasse 7, 1040 Wien
T: +43-1-58801-36230
gottfried.strasser@tuwien.ac.at

Weitere Informationen:

http://www.nature.com/ncomms/2014/140606/ncomms5085/full/ncomms5085.html Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie