Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemischer Sensor auf einem Chip

11.06.2014

An der TU Wien ist es gelungen, mit miniaturisierter Lasertechnik auf einem wenige Millimeter großen Chip einen Sensor zu bauen, der die chemische Zusammensetzung von Flüssigkeiten messen kann.

Man kann sie nicht sehen, aber sie eignen sich perfekt zur Untersuchung von Flüssigkeiten und Gasen: Laserstrahlen im Infrarotbereich werden von unterschiedlichen Molekülen unterschiedlich stark absorbiert. Dieser Effekt wird beispielsweise bei der Messung der Sauerstoffkonzentration in Blut verwendet. An der TU Wien hat man dieses einfache Prinzip aufgegriffen und auf dieser Basis einen neuen Sensor-Prototyp realisiert.


Ein Tropfen der Flüssigkeit genügt, um die Zusammensetzung zu bestimmen.

TU Wien


Das Licht gelangt vom Laser (oben) außen am plasmonischen Wellenleiter (blaues Band) zum Detektor (unten rechts). Dabei wird es, je nach Zusammensetzung der Flüssigkeit, unterschiedlich absorbiert.

TU Wien

Speziell designte Quantenkaskaden-Laser und Lichtdetektoren werden an der TU Wien im selben Herstellungsprozess auf einem Chip gefertigt. Der Abstand zwischen Laser und Detektor beträgt nur 50 Mikrometer. Dieser wird mit einem sogenannten Oberflächenplasmonen-Wellenleiter aus Gold und Siliziumnitrid überbrückt. Dieser neue Ansatz ermöglicht die einfache und kostengünstige Produktion winziger Flüssigkeitssensoren für verschiedenste Einsatzzwecke.

Laser und Detektor

Gewöhnliche Kristall-Laser, etwa der bekannte rote Rubinlaser, bestehen aus nur einem bestimmten Material. Quantenkaskaden-Laser hingegen sind aus einer perfekt optimierten Abfolge unterschiedlicher Materialschichten zusammengesetzt. Dadurch kann man wichtige Eigenschaften des Lasers gezielt steuern, etwa die Wellenlänge seines Lichts. Wenn man an die künstlich erzeugte Schichtstruktur eine elektrische Spannung anlegt, beginnt der Laser zu leuchten. Man kann die Schichtstruktur allerdings auch in umgekehrter Richtung als Detektor verwenden: Wenn man sie mit Licht bestrahlt, entsteht ein elektrisches Signal.

An der TU Wien wurde eine Methode entwickelt, aus derselben Schichtfolge einen Laser und einen Detektor gleichzeitig auf einem Chip herzustellen – und zwar so, dass die Wellenlänge des Laserlichtes genau der Wellenlänge des Detektors entspricht. Dieses bifunktionale Material wird am Zentrum für Mikro- und Nanostrukturen der TU Wien Atomlage für Atomlage mittels Molekularstrahlepitaxie hergestellt. "Durch die gemeinsame Fertigung muss man den Laser und den Detektor nicht justieren – sie sind von Anfang an auf dem selben Chip optimal platziert", sagt Benedikt Schwarz vom Institut für Festkörperelektronik der TU Wien.

Licht-Führung vom Laser zum Detektor

Bei herkömmlichen optischen Systemen muss das erzeugte Laserlicht mit Hilfe genau justierter Linsen zum Detektor geführt werden. Auch Glasfasern können verwendet werden, allerdings transportieren sie das Licht normalerweise bloß in ihrem Inneren, bringen es also nicht in Kontakt mit der Umgebung und eignen sich dann auch nicht als Sensoren.

Bei dem neuen Bauelement, das vom Forschungsteam der TU Wien vorgestellt wurde, funktioniert die optische Verbindung zwischen Quantenkaskaden-Laser und Detektor völlig anders. Sie ist ein plasmonischer Wellenleiter, bestehend aus Gold und Siliziumoxid. „Das Licht wechselwirkt mit den Elektronen im Metall auf eine ganz besondere Weise, sodass das Licht an der Außenseite der Goldoberfläche geführt wird“, erklärt Benedikt Schwarz. „Dadurch kann das Licht von Molekülen auf dem Weg zwischen Laser und Detektor absorbiert werden.“

Der fertige Sensor-Chip kann in eine Flüssigkeit getaucht werden. Aus der Abschwächung des Lichtsignals durch absorbierende Moleküle kann dann auf die Zusammensetzung der Flüssigkeit geschlossen werden. Getestet wurde dieser Sensor mit einer Lösung aus Wasser und Alkohol. Die Wasserkonzentration lässt sich auf diese Weise bis auf 0.06% genau messen. 

Durch die Möglichkeit die Wellenlänge durch das Design der Schichtfolge einzustellen, kann das Sensorkonzept auf eine breite Palette von Molekülen wie zum Beispiel Kohlenwasserstoffe oder auch Proteine für verschiedenste Anwendungen in der chemischen, biologischen oder medizinischen Analyse angewandt werden.

Die Forschungsergebnisse wurden nun im Journal „Nature Communications“ veröffentlicht.
Nature Communications 5, 4085.
doi: 10.1038/ncomms5085

Rückfragehinweis:
Dipl.-Ing. Benedikt Schwarz
Institut für Festkörperelektronik,
Zentrum für Mikro- und Nanostrukturen
Technische Universität Wien
Floragasse 7, 1040 Wien
T: +43-1-58801-36227
benedikt.schwarz@tuwien.ac.at

Prof. Gottfried Strasser
Institut für Festkörperelektronik,
Zentrum für Mikro- und Nanostrukturen
Technische Universität Wien
Floragasse 7, 1040 Wien
T: +43-1-58801-36230
gottfried.strasser@tuwien.ac.at

Weitere Informationen:

http://www.nature.com/ncomms/2014/140606/ncomms5085/full/ncomms5085.html Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie