Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blick in den kosmischen Kühlschrank

16.12.2010
Astronomen beobachten seltenes Molekül innerhalb einer Geburtswolke von Sternen

Im All herrscht dünne Luft. Ganz leer ist der Raum aber nicht: So wabern zwischen den Sternen kalte Staub- und Gaswolken, die im Wesentlichen aus Wasserstoff bestehen. Darunter finden sich seltene Moleküle wie H2D+ und D2H+, gebaut aus dem Wasserstoffatom (H) und seinem schwereren Isotop Deuterium (D).


Die Rho-Ophiuchi-Dunkelwolke ist ein Sternenstehungsgebiet in etwa 400 Lichtjahren Entfernung. Auf dem Hintergrund eines Infrarotbilds zeigt das Insert Spektren des seltenen Moleküls D2H+, beobachtet mit dem APEX-Teleskop in Chile.
Bérengère Parise (Zusammenstellung) / Hintergrund: Spitzer Space Telescope/NASA/JPL-Caltech/L. Allen (CfA) & D. Padgett (SSC-Cattech) / Insert: D2H+-Spektren (Champ+/APEX)


Das APEX-Teleskop in 5100 Meter Höhe über dem Meeresspiegel in Chile. Bérengère Parise

Deuterium, dessen Kern aus einem Proton und einem Neutron besteht, kommt im Universum etwa 100.000-mal seltener vor als gewöhnlicher Wasserstoff mit nur einem Kernproton. Daher lassen sich solche Moleküle schwer aufspüren. Einem Team am Bonner Max-Planck-Institut für Radioastronomie unter der Leitung von Bérengère Parise ist dieses Kunststück gelungen: Mit dem APEX-Teleskop haben die Forscher die Verteilung von D2H+ in der Rho-Ophiuchi-Dunkelwolke, einem Sternentstehungsgebiet, kartiert. (Astronomy & Astrophysics, 16. Dezember 2010)

Sterne werden im Innern von dichten und extrem kalten Gas- und Staubwolken geboren. Die meisten ihrer Moleküle frieren daher auf der Oberfläche von Staubkörnern aus - ähnlich wie Wasserdampf an den Wänden von Kühlschränken kondensiert. Auf diese Weise verschwinden die meisten Moleküle aus dem Gas, was die Beobachtung von Molekülstrahlung erschwert. Gleichzeitig aber laufen zwischen den in der Gasphase verbleibenden Molekülen ganz besondere chemische Prozesse ab: So entstehen bei Temperaturen von ungefähr 10 Kelvin (etwa minus 260 Grad Celsius) viele leichte, deuteriumhaltigen Moleküle, insbesondere dreiatomige Sorten wie H2D+ und D2H+.

Diese Moleküle waren schon im vergangenen Jahrzehnt das Ziel einer Reihe astronomischer Suchprogramme. "Die Linienstrahlung dieser Moleküle hilft uns dabei, die extremen physikalischen Bedingungen zu verstehen, die in den Hüllen von gerade entstehenden Sternen vorherrschen", sagt Bérengère Parise, die Leiterin der Emmy-Noether-Forschungsgruppe am Max-Planck-Institut für Radioastronomie in Bonn. "Und wir erfahren dabei viel über Prozesse, die zur Geburt von Sternen und ihren Planetensystemen führen."

Allerdings senden die Moleküle eine extrem schwache Strahlung hoher Frequenz mit Wellenlängen unterhalb von einem Millimeter aus. Dieser sogenannte Submillimeterbereich lässt sich vom Erdboden allenfalls bei besten Wetterbedingungen erfassen. Gefordert sind daher leistungsfähige Teleskope an den weltweit bestmöglichen Standorten. Dabei erweist sich die Beobachtung von D2H+ noch ein ganzes Stück schwieriger als die von H2D+, da es bei einer höheren Frequenz strahlt. So verliefen die meisten Suchprogramme nach diesem Molekül bisher erfolglos - es gab lediglich eine frühere Beobachtung, jedoch mit unsicherer Frequenzkalibration.

Für ihre jüngsten Messungen nutzten die Forscher das APEX-Radioteleskop, das in 5100 Meter Höhe auf der Chajnantor-Ebene in der chilenischen Atacamawüste steht. Und sie verwendet einen besonderen Empfänger: "Unser CHAMP+ ist ein sehr leistungsfähiges Instrument", sagt Rolf Güsten, Leiter der Submillimetertechnologie-Gruppe am Max-Planck-Institut für Radioastronomie. "Damit können wir astronomische Signale an sieben verschiedenen Positionen am Himmel gleichzeitig aufzeichnen, und das auch noch bei zwei unterschiedlichen Frequenzen."

So waren die Wissenschaftler jetzt in der Lage, die Strahlung von D2H+ in Richtung eines kalten Molekülklumpens innerhalb der 400 Lichtjahre entfernten Rho-Ophiuchi-Dunkelwolke erstmals auf sieben Positionen gleichzeitig zu erfassen. Das wäre an einem Instrument mit nur einem einzigen Empfängerpixel nahezu unmöglich gewesen, da der Nachweis des schwachen Signals eine sehr lange Beobachtungszeit auf jeder Position erfordert hätte.

Neben dem endgültigen Nachweis von D2H+ gelang der Gruppe eine überraschende Entdeckung: Das Molekül wurde nicht nur im kältesten Bereich im Zentrum des Klumpens gefunden, sondern auch in unmittelbarer Nachbarschaft. Offenbar geht das Ausfrieren von Molekülen auf Staubkörnern in extrem effektiver Weise vonstatten. Damit fanden die Forscher einen weiteren Puzzlestein zum Verständnis der chemischen Vorgänge, die in den kosmischen Kreißsälen der Sterne ablaufen.

"Die zusätzliche Information über die räumliche Verteilung von D2H+ durch die CHAMP+-Beobachtungen eröffnet uns die Möglichkeit, die chemischen und physikalischen Prozesse in den frühen Phasen der Sternentstehung im Detail zu untersuchen", sagt Parise. Ihr Team will die Messungen in nächster Zeit fortsetzen.

Atacama Pathfinder Experiment (APEX)
Das Atacama Pathfinder Experiment (APEX) ist ein Radioteleskop für den Submillimeter-Wellenlängenbereich, das in Zusammenarbeit vom Max-Planck-Institut für Radioastronomie (MPIfR) zu 50 Prozent, dem Onsala Space Observatory (OSO) zu 23 Prozent und der Europäischen Südsternwarte (ESO) zu 27 Prozent betrieben wird. Es wurde konstruiert auf der Grundlage einer modifizierten ALMA-Prototyp-Antenne und steht in 5100 Meter Höhe auf der Chajnantor-Ebene in der chilenischen Atacamawüste. Gebaut wurde das Teleskop von VERTEX-Antennentechnik in Duisburg. Der Betrieb von APEX obliegt der Europäischen Südsternwarte.
Carbon Heterodyne Array (CHAMP+)
Das Carbon Heterodyne Array (CHAMP+) ist ein Zweifarben-Heterodyn-Array-Empfänger zur Spektroskopie in den atmosphärischen Fenstern um 450 und 350 Mikrometer (Tausendstel Millimeter), der vom Max-Planck-Institut für Radioastronomie in Zusammenarbeit mit dem niederländischen Institut für Weltraumforschung SRON und dem amerikanischen Jet Propulsion Laboratory (JPL) gebaut wurde. Das Instrument ist seit Sommer 2007 erfolgreich am APEX im Einsatz.
Emmy-Noether-Programm
Das Emmy-Noether-Programm der Deutschen Forschungsgemeinschaft (DFG) möchte jungen Nachwuchswissenschaftlerinnen und Nachwuchswissenschaftlern einen Weg zu früher wissenschaftlicher Selbständigkeit eröffnen. Promovierte Forscherinnen und Forscher erwerben durch eine in der Regel fünfjährige Förderung die Befähigung zum Hochschullehrer durch die Leitung einer eigenen Nachwuchsgruppe.

Originalveröffentlichung:

B. Parise, A. Belloche, F. Du, R. Güsten, K.M. Menten
Extended emission of D2H+ in a prestellar core
Astronomy & Astrophysics, 16. Dezember 2010, DOI: 10.1051/0004-6361/20101547
Weitere Informationen erhalten Sie von:
Dr. Norbert Junkes (Öffentlichkeitsarbeit)
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: +49 228 525-399
E-Mail: njunkes@mpifr-bonn.mpg.de
Dr. Bérengère Parise
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: +49 228 525-153
E-Mail: bparise@mpifr-bonn.mpg.de
Dr. Rolf Güsten
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: +49 228 525-383
E-Mail: rguesten@mpifr-bonn.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://wwww.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

nachricht Innovative High Power LED Light Engine für den UV Bereich
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie