Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biologisches Modellsystem mit „absorbierenden Zustand“: Perfekte Mikroringe aus dem Nichts

15.11.2011
Ein Güterzug würde, sofern die Lok mit ausreichend Energie versorgt wird, fahren so weit die Schienen reichen.

Doch die Natur kennt auch Systeme, deren Dynamik plötzlich in eine Art Endlosschleife mündet. Wie in einem Hamsterrad wäre der Zug in einem solchen System gefangen – die Lok führe zwar, der Zug bewegte sich aber nicht mehr von der Stelle. Die Physiker nennen das einen absorbierenden Zustand.


Zu Mikroringen verbundene Aktinfasern
Bild: Lehrstuhl für Zelluläre Biophysik / TUM

Wissenschaftlern des Exzellenzclusters Nanosystems Initiative Munich ist es nun gelungen, aus nur drei Komponenten ein Modellsystem aufzubauen, um die Gesetzmäßigkeiten solcher Zustände zu erforschen.

Von aktiven Systemen sprechen Naturwissenschaftler, wenn diese pausenlos Energie umsetzen. Solche Systeme begegnen uns überall: einfache Maschinen fallen ebenso in diese Kategorie wie hochentwickelte Lebewesen. Trotzdem sind unser Wissen und das Verständnis dieser Systeme noch sehr begrenzt. Denn oft finden wir komplexe Phänomene, wo eigentlich simple Verhaltensmuster zu erwarten gewesen wären.

So erging es auch dem Physiker-Team um die NIM-Wissenschaftler Andreas Bausch, Professor für Biophysik an der Technischen Universität München (TUM) und Erwin Frey von der Ludwig-Maximilians-Universität München (LMU). Sie untersuchten, wie sich Fasern des Muskelproteins Aktin verhalten, wenn sie gleichzeitig transportiert und miteinander verbunden werden. Dabei beobachteten die Physiker, dass das System sich plötzlich nicht mehr weiter zu entwickeln scheint, obwohl pausenlos Energie umgesetzt wird.

Die Physiker nennen einen solchen Zustand absorbierend. Was bedeutet, dass sich das System aus diesem Zustand nicht mehr befreien kann. Das Modellsystem der Physiker besteht aus nur drei Komponenten: dem Muskelprotein Aktin, Motorproteinen, die in der Zelle vor allem für Transport und Bewegung zuständig sind, sowie Faszin-Molekülen, um die Aktinfasern untereinander zu verbinden. Mit Hilfe dieses einfachen Modellsystems gelang es den Wissenschaftlern, die zu Grunde liegenden Gesetzmäßigkeiten zu untersuchen.

Die aktive Komponente des Modellsystems, also den Transport der Aktin-Fasern, erledigen Millionen biologischer Motorproteine. Für den Versuch sind sie auf einer Oberfläche verankert. Wird dem System Energie in Form von Adenosintriphosphat (ATP), dem Treibstoff der Motorproteine, bereitgestellt, fangen die Fasern an, sich ungeordnet zu bewegen. Geben die Forscher nun Vernetzermoleküle zu, verbinden sich die Einzelfasern. Dadurch entstehen stetig größere Strukturen, die dann ebenfalls transportiert werden. Gegen Ende des Experiments sind alle Fasern in größere Strukturen eingebaut. Allerdings können sich diese Strukturen nun nicht mehr frei über die Oberfläche bewegen. Sie sind nun ortsfest, für immer und ewig – das System ist in einem absorbierenden Zustand gefangen.

Die entstehenden Muster sind überraschend komplex. So formen sich unter anderem perfekte ringförmige Strukturen. Sie rotieren unter dem Einfluss der Motorproteine fortwährend und beinhalten mehrere Millionen einzelner Fasern. Aus den nur nanometergroßen Bauteilen entstehen dabei wie von Geisterhand Mikrometer große Muster. „Das Erstaunliche daran ist nicht nur die Komplexität der Strukturen, sondern dass bereits dieses einfache System aus nur drei Bestandteilen – Fasern, Motorproteine und Vernetzermoleküle – einen absorbierenden Zustand ausbilden kann“, so Volker Schaller vom Lehrstuhl für Biophysik der TUM, Erstautor der Studie.

„Ein derartiges ‚Minimal-System’ sollte es uns erlauben die experimentellen Ergebnisse auch anhand theoretischer Modelle zu verstehen“, ergänzt Christoph Weber vom Lehrstuhl für Statistische und Biologische Physik der LMU München. Er arbeitet zusammen mit Prof. Frey an theoretischen Konzepten zur Beschreibung aktiver Systeme. Zusammen mit den Experimentatoren konnten so die Gesetzmäßigkeiten der Musterbildung identifiziert werden, und anhand von Computermodellen untersucht werden. So gelang es, Größe und Gestalt der Muster auf Zufallsbewegungen auf molekularer Ebene zurückzuführen.

„Den besonderen Reiz des Modellsystems macht, neben der Faszination der nahezu perfekten Muster, ein scheinbarer Widerspruch aus,“ sagt Biophysiker Andreas Bausch. Danach kann ein aktives System in einen absorbierenden Zustand übergehen, obwohl es beständig Energie verbraucht: „Ein absorbierender Zustand ist für das System wie eine Sackgasse: sobald auch nur ein Teil des Systems den Übergang vollzogen hat, gibt es kein Entrinnen mehr,“ so Bausch. Derartige absorbierende Zustände finden sich in vielen, auch weitaus komplexeren aktiven Systemen, etwa beim Wachstum konkurrierender Zellpopulationen.

Doch liegen all diesen Systemen die gleichen fundamentalen Gesetzmäßigkeiten zu Grunde? Diese Überlegung gehört laut Frey zu den großen offenen Fragen in der Physik komplexer Systeme. „Zur Beantwortung dieser Fragen sind wir aber darauf angewiesen, zunächst einfache Modellsysteme zu entwickeln und zu verstehen“, betont der Münchner Physiker.

Die Forschungsarbeiten wurden unterstützt aus Mitteln des European Research Council (CompNet), der Deutschen Forschungsgemeinschaft (DFG) (SFB 863), des Exzellenzclusters Nanosystems Initiative Munich (NIM), dem Institute for Advanced Study und der International Graduate School of Science and Engineering (IGSSE) der Technischen Universität München sowie dem Bayerischen Elitenetzwerk (CompInt, NanoBioTechnology).

Originalpublikation:
Volker Schaller, Christoph A. Weber, Bejamin Hammerich, Erwin Frey und Andreas R. Bausch: Frozen steady states in active systems. PNAS, Early Edition, online Nov. 14, 2011.

DOI: 10.1073/pnas.1107540108 – http://www.pnas.org/cgi/doi/10.1073/pnas.1107540108

Kontakte:
Prof. Dr. Andreas Bausch
Technische Universität München
Lehrstuhl für Zellbiophysik (E 27)
James Franck Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12480 – Fax: +49 89 289 14469
E-Mail: andreas.bausch@ph.tum.de
Prof. Dr. Erwin Frey
Ludwig-Maximilians-Universität München
Lehrstuhl für Statistische und Biologische Physik
Theresienstraße 37, 80333 München
Tel.: 089 / 2180-4537
Fax: 089 / 2180-4154
E-Mail: frey@lmu.de

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://bio.ph.tum.de/home/e27-prof-dr-bausch/bausch-home.html
http://www.theorie.physik.uni-muenchen.de/lsfrey

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops