Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bewegungen von Nanopartikeln sichtbar machen

25.11.2013
Berliner und Freiburger Physiker erhalten ein Reinhart-Koselleck-Projekt der Deutschen Forschungsgemeinschaft

Prof. Dr. Thomas Möller (TU Berlin) und Prof. Dr. Bernd von Issendorff (Albert-Ludwigs-Universität Freiburg) werden gemeinsam mit einem Reinhart-Koselleck-Projekt der Deutschen Forschungsgemeinschaft (DFG) ausgezeichnet: Sie erhalten insgesamt 900 000 Euro für ihr Projekt „Zeitaufgelöstes Abbilden der nanoskaligen Dynamik von Metallpartikeln in der Gasphase“.

In dem Projekt wollen die beiden Physiker untersuchen, wie sich Materie auf einer mikroskopischen Skala als isolierte Nanopartikel bewegt, wenn man sie kurzfristig stark verformt oder erhitzt. Verkleinert man makroskopische Materie auf fast atomare Dimensionen, verändern sich viele Eigenschaften dramatisch, so vermutlich auch die Bewegung.

In dem Projekt wird die Bewegung durch ein neuartiges Verfahren erstmals sichtbar gemacht: Mit ultrakurzen Pulsen eines Röntgenlasers soll die zeitabhängige Verformung der Partikel nach einer Anregung abgebildet werden. In dem neuen Projekt sollen viele, zu verschiedenen Zeitpunkten aufgenommene Einzelbilder von Metall-Nanopartikeln zu „Filmen“ zusammengesetzt werden.

Diese zeigen, wie sich Teilchen innerhalb der Metall-Nanopartikel bewegen. Sie erlauben damit einen direkten Zugriff auf die elastischen Eigenschaften der Partikel und der zugrunde liegenden atomaren Wechselwirkungen. Außerdem lässt sich verfolgen, wie die Partikel sich durch starke Erwärmung oder Schmelzen verändern. Die Forscher wollen sich auch dem Phänomen der Reibung widmen, deren grundlegender Mechanismus auf atomarer Skala unklar ist.

Die beiden Physiker erhoffen sich von ihren Experimenten, neue Bewegungsphänomene, beispielsweise eine extreme Formveränderung von Nanoteilchen, zu beobachten. Dies könnte Forschungsgebiete weit über die Nanophysik hinaus befruchten, in denen die Anregung und Dynamik kleiner Strukturen untersucht werden – etwa die Photonik oder die Biophysik. Schon seit mehreren Jahren arbeiten die Forschungsteams der Physiker bei der Untersuchung der Eigenschaften von Nanopartikeln zusammen.

Die DFG vergibt die Reinhart-Koselleck-Förderung ausschließlich an Personen mit herausragender wissenschaftlicher Reputation. Ziel ist es, besonders innovative oder im positiven Sinne risikobehaftete Forschungsarbeiten zu unterstützen.

Fotomaterial zum Download: www.tu-berlin.de/?id=142324

Weitere Informationen erteilen Ihnen gern:
Prof. Dr. Thomas Möller, Institut für Optik und Atomare Physik der TU Berlin, Tel.: 030/314-23712,

Fax: 030/314-23018, E-Mail: thomas.moeller@physik.tu-berlin.de, www.ioap.tu-berlin.de/menue/arbeitsgruppen/ag_moeller,

Prof. Dr. Bernd von Issendorff , Physikalisches Institut/Freiburger Materialforschungszentrum, Albert-Ludwigs-Universität Freiburg, Tel.: 0761/203-5726, E-Mail: bernd.von.issendorff@physik.uni-freiburg.de

Stefanie Terp | Technische Universität Berlin
Weitere Informationen:
http://www.tu-berlin.de/?id=142324
http://www.ioap.tu-berlin.de/menue/arbeitsgruppen/ag_moeller

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise