Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Berner Computersimulation hilft, die Entstehung unseres Sonnensystems besser zu verstehen

14.02.2013
Simulationen verstärken die Aussagekraft von Bild- und Messdaten aus Weltraummissionen: Am Beispiel eines Asteroiden zeigt der Berner Astrophysiker Martin Jutzi, wie Kollisionen mit anderen Himmelskörpern rekonstruiert und sogar die innere Struktur von sogenannten Planetenvorläufern beschrieben werden können. Diese Modellierungen helfen, die Entwicklung unseres Sonnensystems besser zu verstehen. Die Studie erscheint heute als Titelgeschichte im Fachjournal «Nature».
In einer riesigen staubigen Gaswolke ballten sich vor viereinhalb Milliarden Jahren Staubteilchen zu immer grösseren Klumpen zusammen. Diese kollidierten, aggregierten und wuchsen so zu Planeten heran. Zwischen den Planetenbahnen von Mars und Jupiter blieben jedoch hunderttausende kleinere Brocken zurück. Sie bilden seither den sogenannten Asteroidengürtel und haben ihre Zusammensetzung kaum verändert. Asteroiden bergen deshalb unschätzbare Informationen zur Entstehung unseres Sonnensystems.

Einem Asteroid namens Vesta gilt in der Forschung besondere Aufmerksamkeit: Mit seinen rund 500 Kilometern Durchmesser gehört er zu den drei grössten Asteroiden und wird als Protoplanet (Planetenvorläufer) betrachtet. Zudem ist er der einzige bekannte Asteroid, der eine erdähnliche Struktur aufweist – mit einem Kern, einem Mantel und einer Kruste.

Computersimulation rekonstruiert Kollisionen zwischen Asteroiden

Martin Jutzi vom Center for Space and Habitability (CSH) der Universität Bern hat nun mit einer dreidimensionalen Computersimulation präzise rekonstruiert, wie Vesta vor über einer Milliarde Jahre zweimal mit anderen Asteroiden zusammenstiess. So zeigen die Modellierungen, dass der Protoplanet diesen Kollisionen seine elliptische Gestalt verdankt und dass sie auch seine Oberflächenstruktur gezeichnet haben.

Die Simulationen erlauben zudem erstmals detaillierte Rückschlüsse auf die Zusammensetzung und Eigenschaften des Innenlebens von Vesta. Dies trägt dazu bei, die Entwicklungsgeschichte des Sonnensystems besser zu verstehen. Die Planetenbildung beruht nämlich massgeblich auf Kollisionen zwischen Himmelskörpern. «Unsere Methode ermöglicht besonders aufschlussreiche Auswertungen von Bild- und Messdaten aus Weltraummissionen», sagt Martin Jutzi. Die Studie, die in Zusammenarbeit mit Forschenden der EPFL sowie aus Frankreich und den USA entstand, wird heute von «Nature» als Titelstory präsentiert.

Modellierungen legen Verborgenes frei

Bisher hatten Beobachtungen mit dem Weltraumteleskop Hubble erste Hinweise auf einen riesigen Krater am Südpol des Asteroiden Vesta geliefert. Dann startete 2007 die Sonde «Dawn» der NASA ihre Weltraum- und Zeitreise in die Vergangenheit des Sonnensystems. Ab Sommer 2011 kreiste sie ein Jahr lang auf einer nahen Umlaufbahn um Vesta. Bilder im visuellen Bereich sowie weitere Messdaten lieferten Informationen über die Topografie des Asteroiden sowie über die Zusammensetzung der Mineralien, die an seiner Oberfläche sichtbar sind. Dabei zeigte sich unter anderem, dass die von Hubble beobachtete Vertiefung am Südpol aus zwei teilweise überlappenden Kratern besteht.

Von diesen Informationen ausgehend, zeigen nun die Computersimulationen von Jutzis Team, wie zwei nacheinander erfolgte Einschläge von Himmelskörpern genau zur Bildung der beobachteten überlappenden Kratern führten. Diese überspannen beinahe die ganze südliche Hemisphäre von Vesta. Die Modellierungen zeigen Grösse (66 und 64 Kilometer Durchmesser), Geschwindigkeit (5.4 Kilometer pro Sekunde) und Einschlagwinkel der Körper, die mit Vesta kollidierten. Dies verrät viel über die Art der Objekte, die sich vor einer Milliarde Jahre in der Nähe des Protoplaneten befanden.

Form und Topographie von Vestas südlicher Hemisphäre stimmen zwischen den Schlussbildern der Simulationen und den Bild- und Messdaten der «Dawn»-Mission sehr gut überein. Die Modelle reproduzieren sogar genauestens die spiralförmigen Strukturen im Inneren des jüngsten Kraters, die auf Bildern der «Dawn»-Mission sichtbar sind. «Dies zeigt wie zuverlässig unsere Methode ist», freut sich Jutzi.

Die Forschenden gehen davon aus, dass die Modelle auch Informationen über bisher verborgene Eigenschaften von Vesta liefern. So verraten die Simulationen zum Beispiel, dass das von den Einschlägen ausgeworfene Material aus Tiefen von bis zu 100 Kilometern stammt. «Wir können anhand der Verteilung und Art dieses Materials die verschiedenen inneren Schichten, aus denen Vesta zusammengesetzt ist, präzise rekonstruieren», erläutert Philippe Gillet, Direktor des Earth and Planetary Science Laboratory der EPFL.

«Dass wir nun auch in das Innere solcher Planetenvorläufer blicken können, ermöglicht ganz neue Perspektiven bei der Erforschung der Geschichte unseres Sonnensystems», sagt Jutzi.

Angaben zur Studie:
M. Jutzi, E. Asphaug, P. Gillet, J.-A. Barrat, W. Benz: The structure of the asteroid 4 Vesta as revealed by models of planet-scale collisions, Nature, 14. Februar 2013, in print.

Nathalie Matter | Universität Bern
Weitere Informationen:
http://www.unibe.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen