Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

An den Grenzen der Supraleitung

19.11.2007
Ein deutsch-amerikanisches Forscherteam hat eine neue Möglichkeit gefunden, um Supraleitung an Grenzflächen gezielt zu beeinflussen.

Vielleicht muss die Halbleiter-Industrie in einigen Jahren ihren Namen ändern. Denn was Silizium, Germanium oder Galliumarsenid heute in Chips leisten, können Supraleiter möglicherweise viel schneller und effizienter - wenn sie denn einmal auch bei der durchschnittlichen Temperatur eines Büros Strom widerstandslos leiten. Wissenschaftler vom Max-Planck-Institut für Festkörperforschung in Stuttgart haben jetzt erste Schritte unternommen, Supraleiter in diese Richtung zu trimmen.


Grenzgänge an einem Supraleiter: Max-Planck-Forscher haben die Trennfläche zwischen einem supraleitenden Kupferoxid (oben) und einem ferromagnetischen Manganoxid (unten) untersucht. Wie die Atome dort Röntgenstrahlung absorbieren, gibt ihnen Aufschluss über die Elektronendichte, deren mögliche räumliche Verteilungen links zu sehen sind. Bild: Science

Sie haben die elektronische Struktur eines Materials untersucht, in dem sich Schichten eines Hochtemperatursupraleiters und eines Manganoxids abwechseln. Dabei haben sie festgestellt, dass die Atome der beiden Stoffe starke chemische Bindungen über die Schichtgrenzen hinweg bilden. Diese Bande waren nicht nur bislang unbekannt, sie haben auch starken Einfluss auf die Supraleitung. Möglicherweise lassen sich die Bindungen künftig so formen, dass sie Supraleitung bei höheren Temperaturen als bislang erlauben. (Science, 16. November 2007)

Mikroelektronik beruht auf Grenzübertritten von Elektronen - in einem Transistor wandern sie zwischen Schichten verschiedener Halbleiter hin und her, wenn eine winzige Spannung ihnen einen kleinen Schubs gibt. Physiker sprechen dann davon, dass eine externe Spannung die Leitfähigkeit erhöht. Ließe sich der elektrische Widerstand an Materialgrenzen auf ähnliche Weise und bei Raumtemperatur gänzlich ausschalten, könnte Elektronik schneller und sparsamer arbeiten. Doch zu diesem Zweck müssen Physiker die elektronischen Prozesse an diesen Grenzflächen erst einmal besser verstehen.

Die Wissenschaftler vom Stuttgarter Max-Planck-Institut für Festkörperforschung haben dazu nun einen Beitrag geleistet: Sie haben Sandwich untersucht, in dem sich Schichten des Hochtemperatursupraleiter Yttriumbariumkupferoxid, kurz YBCO, und eines ferromagnetischen Manganoxids, das also ähnliche magnetische Eigenschaften wie Eisen hat, übereinander stapeln - und zwar mit sehr scharfen Grenzen zwischen den beiden Materialien. An diesen Grenzen kommt es jedoch zu chemischen Übergriffen. Wie die Physiker festgestellt haben, knüpfen die Atome der beiden Materialien nämlich kovalente Bindungen zueinander, in denen - vereinfacht gesprochen - Elektronenpaare wie ein chemischer Kitt wirken.

Die grenzübergreifenden Bindungen waren Physikern zwar noch unbekannt, richtig überrascht haben die Erkenntnisse die Wissenschaftler aber nicht: "Wenn man es sich genau überlegt, hätte man damit rechnen können", sagt Bernhard Keimer, Direktor am Max-Planck-Institut für Festkörperforschung und Leiter der Forschergruppe: "Bislang hat einfach keiner die elektronische Struktur an den Grenzflächen untersucht."

Über die chemischen Bande beeinflusst das Manganoxid die elektronischen Eigenschaften des Supraleiters. "In unserem Fall wird die Supraleitung geschwächt", sagt Keimer: "Da wir den Mechanismus jetzt aber verstehen, können wir einen Hochtemperatursupraleiter vielleicht auch mit einem Material kombinieren, das schon bei höheren Temperaturen eine widerstandslose Leitung ermöglicht." Wenn Physiker nämlich von einem Hochtemperatursupraleiter sprechen, ist das ein bisschen irreführend: Materialien wie YBCO verlieren zwar bei höheren Temperaturen den Widerstand als die ersten bekannten Supraleiter, aber selbst YBCO leitet Strom erst bei minus 180 Grad Celsius verlustfrei.

Im Fall der Schichtstrukturen, die die Stuttgarter Forscher untersuchten, senken die ferromagnetischen Eigenschaften des Manganoxids die Temperatur, unterhalb derer YBCO seinen Widerstand aufgibt, sogar weiter ab. Supraleitung und Magnetismus, wie man ihn vom Eisen kennt, sind nämlich zwei Eigenschaften, die sich nicht vertragen. Diese Art von Magnetismus tritt auf, wenn sich die Elektronen, die sich auch als winzige Stabmagneten betrachten lassen, alle parallel gruppieren. Supraleitung tritt genau im umgekehrten Fall auf - wenn sich die Elektronen nämlich zu Paaren, den Cooperpaaren zusammenschließen. Dazu müssen sich ihre Magnetmomente antiparallel ausrichten; ihre magnetischen Pole zeigen dann in entgegengesetzte Richtungen.

"An der Grenzfläche unserer Heterostrukturen ordnen sich die Elektronen neu an, weil sich die kovalenten Bindungen bilden", erklärt Bernhard Keimer. Vereinfacht gesprochen übertragen diese Bindungen den Ferromagnetismus über die Grenzfläche hinweg. Daher richten sich die Magnetmomente der Elektronen in der YBCO-Schicht parallel aus - und deren Supraleitung wird geschwächt. Ein anderes Material als das ferromagnetische Manganoxid könnte die Bildung von Cooperpaaren aber vielleicht unterstützen. An der Entwicklung solcher Schichtstrukturen arbeiten Bernhard Keimer und seine Mitarbeiter jetzt.

Ihre neuen Erkenntnisse über die elektronischen Verhältnisse im Grenzbereich ihrer Schichtstrukturen verdanken sie einigen experimentellen Tricks. Um eine so schmale Schicht in den Blick nehmen, wie es diesem Team nun gelungen ist, ist Röntgenlicht, das Physiker als Untersuchungswerkzeug nutzen, nicht feinfühlig genug. Es liefert meist Informationen über Elektronen aus einem größeren Bereich. An einem Synchrotron, in dem Elektronen fast auf Lichtgeschwindigkeit beschleunigt werden und dabei Röntgenstrahlung aussenden, können sie genau die Grenze untersuchen, an der sich die Atome des Mangan- und des Kupferoxids begegnen. "Bei der Synchrotronstrahlung können wir sowohl die Energie des Lichts als auch seine Polarisation sehr genau einstellen", sagt Keimer.

Als Polarisation bezeichnen Physiker die Schwingungsrichtung des Lichts. Indem die Physiker ihre Proben mit der Synchrotronstrahlung abtasten und dabei an diesen beiden Stellschrauben drehen, erfahren sie schon einiges darüber, wo sich die Elektronen in der Grenzschicht aufhalten. Welche speziellen Orbitale die Ladungsträger besetzen, verraten ihnen jedoch erst Simulationen der Elektronenstruktur, die sie mit ihren experimentellen Ergebnissen füttern. Solche Rechnungen geben ihnen nun auch Hinweise, in welchen Schichtstrukturen sich die Supraleitung verstärken würde. "Aber bis wir Transistoren aus solchen Materialien bauen können, wird es noch einige Jahre dauern", sagt Bernhard Keimer.

[HER]

Originalveröffentlichung:

J. Chakhalian, J.W. Freeland, H.-U. Habermeier, G. Cristiani, G. Khaliullin, M. van Veenendaal, B. Keimer
Orbital reconstruction and covalent bonding at an oxide interface
Science, 16. November 2007

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Hochtemperatursupraleiter Supraleiter Supraleitung YBCO

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie