Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtspiele auf dem Mikrochip

19.11.2007
Wissenschaftler bringen Silizium zum Leuchten, indem sie Quanteneffekte nutzen

Die Hersteller von Computerchips lieben Silizium - doch inzwischen platzt es aus allen Nähten. Die Nachfrage nach immer höherer Rechenkapazität ist enorm. Kleiner und schneller würden Prozessoren aus Silizium etwa, wenn sie mit Licht rechnen könnten. Wissenschaftler am Max-Planck-Institut für Mikrostrukturphysik haben nun gleich zwei verschiedene Siliziumdioden zum Leuchten gebracht. Ein Autor der MaxPlanckForschung hat die zwei Verfahren unter die Lupe genommen. In der neusten Ausgabe des Magazins berichtet er, warum Siliziumchips vielleicht schon bald mit viel mehr Bits und Bytes jonglieren können. (MaxPlanckForschung 3/2007)


Hier leuchtet Silizium schon - aber nicht in der Diode, wie sie für die Optoelektronik nötig wäre. Bild: SPL - Agentur Focus

Einige Wissenschaftler hoffen, dass Licht einmal den Platzmangel auf Computerchips beheben kann. Dann sollen Photonen statt Elektronen mit Daten hantieren und so noch mehr Rechenleistung auf engstem Raum ermöglichen. Auf Silizium als Grundlage für Mikrochips möchten die Forscher dabei freilich nicht verzichten. Zu gut beherrscht die Industrie es inzwischen, Transistoren aus diesem Material zu ätzen. Eine Forschungsgruppe am Max-Planck-Institut für Mikrostrukturphysik in Halle hat Silizium jetzt das Leuchten beigebracht, indem sie Quanteneffekte ausnutzt.

Damit ein Material Licht aussendet, müssen seine Elektronen zunächst Energie aufnehmen, die ihnen etwa in Form von elektrischem Strom angeboten werden kann. Dabei hüpfen sie von einem tieferen energetischen Niveau in ein höheres - auf einer Art energetischem Sprungbrett. Von dort lassen sie sich wieder in die Tiefe fallen und geben ihre überschüssige Energie im besten Falle als Licht ab. Aber die Elektronen des Siliziums gelangen nur auf einem Umweg auf das Sprungbrett. Den finden sie nur schwer, so dass Silizium normalerweise nicht leuchtet.

... mehr zu:
»Elektron »Silizium

Einen Trick, um den Elektronen des Siliziums auf die Sprünge zu helfen, beherrschen am Hallenser Max-Planck-Institut Peter Werner, Vadim Talalaev und ihre Mitarbeiter. So haben die Forscher kürzlich eine Leuchtdiode auf der Basis von Halbleitern konstruiert. In ihr stellt Silizium jedoch nur eine Komponente dar: Wie in einem Sandwich haben die Wissenschaftler abwechselnd nanometerdünne Schichten aus Silizium mit einer Prise Antimon und Germanium übereinander gestapelt. Das Germanium-Silizium-Supergitter leuchtet, weil die Elektronen des Siliziums in den benachbarten Germaniumschichten passende Löcher finden, in die sie mit einer Leuchtspur fallen können.

Die Schichten aus Germanium dürfen im Schnitt nicht einmal fünf Nanometer messen, und die aus Silizium auch nicht viel mehr, damit das Supergitter Licht abgibt. "Die Quanteneffekte, die im Nanometerbereich auftreten, machen diese Forschung für uns interessant", sagt Ulrich Gösele, Direktor des Instituts. Einer der Effekte ist, dass die Elektronen benachbarter Siliziumschichten durch die trennende Germaniumebene tunneln. Dabei vollbringen sie ein Kunststück, das nur in der Quantenphysik möglich ist. Sie gehen durch eine Wand. Der Tunneleffekt macht das Silizium-Germanium-Supergitter erst zu einer brauchbaren Lichtquelle. Sandwiches aus dickeren Lagen der beiden Halbleiter leuchten zwar auch, aber nur sehr schwach, weil die Elektronen nur schlecht zu den Löchern im Germanium gelangen. "Eine Siliziumdiode mit unserer Effizienz würde für die Optoelektronik schon reichen", sagt Talalaev und meint damit unter anderem die Hersteller von Computerchips. "Jetzt versuchen wir, daraus einen Laser zu bauen."

Einen Silizium-Laser zu bauen, versucht auch Margit Zacharias, die kürzlich noch eine Forschungsgruppe in Ulrich Göseles Abteilung leitete. Sie setzt dabei auf die Nanotechnologie. Ihre Silizium-Nanokristalle ordnen sich in einem Block von Siliziumdioxid zu einem Muster an, das auf Bildern eines Transmissions-Elektronenmikroskops an eine belgische Waffel erinnert. Doch eigentlich passt der Vergleich mit einem Kirschkuchen besser, denn die Nanokristalle sitzen im in der isolierenden Schicht des Siliziumdioxids wie die Kirschen im Teig. Nur eben viel geordneter, sodass sie wiederum ein Supergitter aus Quantenpunkten formen.

Die Größe der Kristalle ist auch hier entscheidend. "Ich stelle mir das manchmal selber so vor, dass sich die Elektronen und Löcher in den Nanokristallen einfach nicht aus dem Wege gehen können", sagt Zacharias. Da der Abstand so klein ist, finden sie leichter zueinander und geben bei ihrer Begegnung einen Lichtblitz ab. Aber das Siliziumdioxid sperrt als Isolator nicht nur die Elektronen und Löcher in den Nanokristallen ein, es verhindert auch, dass von außen welche in den Kristall eindringen. Das ist ungünstig, wenn Strom die Energie zum Leuchten liefern soll. "Die Löcher und Elektronen müssen also durch die Siliziumdioxidschicht tunneln", sagt Lorenzo Pavesi. Er unterstützt Zacharias von der Universität Trento in Norditalien aus. "Dafür sind die Oxidschichten um die Nanokristalle bislang noch zu dick." Immerhin hat Pavesi aber schon Ideen, die Probleme zu lösen. "Wie wir das machen wollen, kann ich natürlich nicht verraten", sagt er: "Aber die Chancen stehen gut."

Eine ausführliche Version dieses Textes finden Sie im Schwerpunkt der neuesten Ausgabe der MaxPlanckForschung. Unter dem Titel "Neue Materialien" beleuchten wir unter anderem die technischen Möglichkeiten, die in Stoffen aus der Natur schlummern. Max-Planck-Forscher versuchen die Prinzipien der Natur nutzbar zu machen. Die Wissenschaftler gucken bei ihrer Suche nach neuen Werkstoffen, was unter der Oberfläche von Muscheln steckt, und woher Holz seine Stärke nimmt. In dem Beitrag "Das Geheimnis in der Austernschale" schildern wir, wie Schalentiere, Seeigel und Korallen die Ideen zu neuen keramischen Materialien liefern. In "Bäume zeigen Muskeln" erweist sich die Natur als ausgezeichneter Baumeister biegsamer Fasern. Und die Max-Planck-Forscher erweisen sich als ihre Lehrlinge, die nach ihrem Vorbild Glasfaserstoffe für den Flugzeugbau optimieren. Dass die Materialforschung auch von einem Blick zurück profitieren kann, beleuchten wir hingegen in dem Beitrag "Das Metall macht die Musik". Dabei stellen wir Ihnen Metallforscher vor, die aufklären, warum die Orgelpfeifen barocker Baumeister einen so guten Klang erzeugen. Damit Musikliebhaber in Zukunft Orgelkonzerte in der Qualität von Bach und Buxtehude genießen können.

Anlässlich der Nobelpreisverleihung an den Max-Planck-Chemiker Gerhard Ertl entschlüsseln Jürgen Renn und Horst Kant in ihrem Essay "Erfolge Abseits des Mainstreams" das "Erfolgsmodell Max Planck". Sie reflektieren dabei die gegenwärtige Forschungspolitik vor ihrem geschichtlichen Hintergrund.

Die Rubrik "Faszination Forschung" zeigt, dass Forschung auch heute noch durchaus abenteuerlich sein kann. Klimaforscher der Max-Planck-Gesellschaft besteigen in dem Beitrag "Atmosphärenchemie - Luftproben in vollen Zügen" die transsibirische Eisenbahn. Auf dem Weg ins Niemandsland um Wladiwostok untersuchen sie, welche Rolle Waldbrände und Methan-Emissionen in Sibirien beim Klimawandel spielen.

Der Einsamkeit der sibirischen Weiten stellen wir in der Sparte "Wissen aus erster Hand" die Geselligkeit von Einzellern gegenüber. Dass Bakterien sich bisweilen zusammenrotten und sogar einen Fruchtkörper ausbilden, erfordert ein ausgeklügeltes Kommunikationssystem. Erfahren sie, "was sich Einzeller zuflüstern".

Der "Kongressbericht" fasst die Beiträge einer Tagung der International Society of Chemical Ecology (ISCE) in Jena zusammen. Die neuesten Erkenntnisse über die komplexen Beziehungen zwischen Pflanzen, Tieren und Mikroben diskutierten Forscher auf ihrem 23. Jahrestreffen, das das Max-Planck-Institut für chemische Ökologie mitorganisiert hat.

Dass der Nutzen der medizinischen Forschung manchmal auf politische Grenzen trifft, berichtet Tim Schröder in der Rubrik "Forschung und Gesellschaft". Sein Beitrag "Der harte Weg ins Trockene" schildert, wie der erfolgreichen Langzeittherapie für Alkoholabhängige "ALITA" der Finanzhahn zugedreht wird.

In "Zur Person" stellen wir Ihnen schließlich die Kognitions- und Neurowissenschaftlerin Ina Bornkessel vor. Die Leiterin der unabhängigen Nachwuchsgruppe Neurotypologie in Leipzig erforscht, warum die Menschen so viele unterschiedliche Sprachen sprechen, obwohl ihre Gehirne immer gleich aufgebaut sind.

Dem Heft liegt der GEOMAX "Vom Dotcom zum Cluster - wie Gründergeist das Wirtschaftswachstum ankurbelt" bei.

MaxPlanckForschung erscheint viermal im Jahr. Das Wissenschaftsmagazin kann bei der Pressestelle der Max-Planck-Gesellschaft oder über unser Webformular abonniert werden. Der Bezug ist kostenfrei.

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Elektron Silizium

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen