Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Nanoteilchen leuchten, können Computer schneller schalten

29.10.2007
Chemnitzer Physiker treiben die Grundlagenforschung in der Nanotechnologie voran - Deutsche Forschungsgemeinschaft fördert ein Projekt der Professur Optische Spektroskopie und Molekülphysik der TU Chemnitz mit 190.000 Euro

Wenn es um Millimeter geht, ist noch alles klar: In dieser Größenordnung ist weitgehend erforscht, wie sich Materialien verhalten, welche chemischen Bindungen sie eingehen, welche physikalischen Gesetze gelten. Doch dringt man in kleinere Größenordnungen vor, dann stößt man auf immer neue Probleme. "Bei Systemen in der Größe von Nanometern gelten viele Gesetzmäßigkeiten einfach nicht mehr: Die Elemente verhalten sich anders, als wir es gewöhnt sind.

Deshalb ist viel neue Grundlagenforschung nötig, um zu verstehen, was im Nanometerbereich vor sich geht", erklärt Dr. Harald Graaf, wissenschaftlicher Assistent an der Professur Optische Spektroskopie und Molekülphysik der TU Chemnitz. Dass in Zukunft kein Weg mehr an der Nanotechnologie vorbeiführen wird, da sind sich die Wissenschaftler einig - eine praktische Anwendung ist die Signalverarbeitung in logischen Strukturen. Bisher läuft sie mit elektrischen Signalen, doch hier lässt sich die Geschwindigkeit nicht mehr steigern. Damit Computerrechner trotzdem immer schneller arbeiten können, muss ein Ersatz für die elektrischen Signale her. Eine Möglichkeit: der Einsatz von Photonen. Photonen sind die Bausteine der elektromagnetischen Strahlung, die sowohl Teilchen- als auch Welleneigenschaften besitzen. Zur elektromagnetischen Strahlung gehört auch das für das menschliche Auge sichtbare Licht.

Damit diese so genannte optische Signalverarbeitung funktioniert, müssen auf den Oberflächen der Bauteile Strukturen aufgebracht werden, die Photonen aufnehmen und abgeben können. Doch welche Materialien eigenen sich dafür? Dieser Frage gehen derzeit Physiker der TU Chemnitz nach. "Präparation und Charakterisierung ein- und zweidimensionaler optisch aktiver Nanostrukturen mittels Rastersondenlithographie" heißt ihr Projekt, das die Deutsche Forschungsgemeinschaft (DFG) für eine Laufzeit von drei Jahren mit rund 190.000 Euro fördert.

Mit diesem Geld wird unter anderem ein Diplomand der Professur als wissenschaftlicher Mitarbeiter in das Projekt übernommen. Außerdem wird ein Rasterkraftmikroskop finanziert, das es ermöglicht, Oberflächen mittels Nanolithographie zu bearbeiten. Bei diesem Verfahren wird auf eine sehr glatte Oberfläche - die Chemnitzer Forscher arbeiten mit Silizium - eine dünne so genannte organische Schicht aufgebracht. Diese verhindert, dass das Silizium an der Luft mit dem Sauerstoff eine Verbindung eingeht und oxidiert. Anschließend fährt die nanometerfeine Spitze des Rasterkraftmikroskops über die Oberfläche. Wird an sie eine Spannung angelegt, so wird genau an dieser Stelle Sauerstoff durch die organische Schicht transportiert. Erreicht der Sauerstoff das darunterliegende Silizium so wird dieses zu Siliziumoxid oxidiert. An diese Siliziumoxidstrukturen auf der Oberfläche binden die Wissenschaftler in einem weiteren Schritt einen in Wasser gelösten Farbstoff - ein so genanntes optisch aktives Material. Das lässt sich, wenn es beispielsweise von Laserlicht angestrahlt wird, anregen und leuchtet nun. Dieses Leuchten kann so genau gesteuert werden, dass es als optisches Signal dienen kann.

"Wir suchen im Rahmen des Projektes zum einen geeignete Farbstoffe. Zum anderen erforschen wir die hergestellten Strukturen, zum Beispiel hinsichtlich ihrer Haltbarkeit", erklärt Graaf. "Wir planen eine Kooperation mit der Juniorprofessur Nichtklassische Synthesemethoden, weil die Forschung einige chemische Themen anschneidet. Da holen wir uns dann Experten aus dem eigenen Haus mit ins Boot."

Mit Hilfe der Nanolithographie haben die Chemnitzer Wissenschaftler im vergangenen Jahr bereits das damals kleinste Fußballfeld der Welt hergestellt - es ist so winzig, dass es etwa 1.000 Mal auf die Querschnittsfläche eines menschlichen Haares passt. "Die dabei gesammelten Erfahrungen mit dieser Technik bringen wir jetzt in das neue Projekt mit ein. Damals haben wir bereits nanometergroße Strukturen auf Oberflächen aufgebracht, diesmal binden wir an diese Strukturen noch Farbstoffe und bringen sie damit zum Leuchten", zeigt Prof. Dr. Christian von Borczyskowski, Inhaber der Professur Optische Spektroskopie und Molekülphysik, den Fortschritt der Forschung auf. "Weltweit wird an der Nanotechnologie geforscht - aber es wird sehr wenig veröffentlicht, da noch nicht immer sicher ist, dass die Ergebnisse ausreichend fundiert sind", so Dr. Harald Graaf. "Es gibt bei diesem Forschungsgebiet noch viel Ungewissheit und damit immer neue Probleme - aber das ist auch gerade die Herausforderung!" Dieser Herausforderung können sich auch die Chemnitzer Physikstudenten stellen. Sie reisen dabei nicht nur in den spannenden Nanokosmos, sondern auch in eine zukunftsweisende Arbeitswelt.

Weitere Informationen erteilt Dr. Harald Graaf, Telefon 0371 531-34807, E- Mail harald.graaf@physik.tu-chemnitz.de.

Katharina Thehos | TU Chemnitz
Weitere Informationen:
http://www.tu-chemnitz.de
http://www.tu-chemnitz.de/tu/presse/

Weitere Berichte zu: Molekülphysik Nanotechnologie Photon Spektroskopie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen