Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Nanoteilchen leuchten, können Computer schneller schalten

29.10.2007
Chemnitzer Physiker treiben die Grundlagenforschung in der Nanotechnologie voran - Deutsche Forschungsgemeinschaft fördert ein Projekt der Professur Optische Spektroskopie und Molekülphysik der TU Chemnitz mit 190.000 Euro

Wenn es um Millimeter geht, ist noch alles klar: In dieser Größenordnung ist weitgehend erforscht, wie sich Materialien verhalten, welche chemischen Bindungen sie eingehen, welche physikalischen Gesetze gelten. Doch dringt man in kleinere Größenordnungen vor, dann stößt man auf immer neue Probleme. "Bei Systemen in der Größe von Nanometern gelten viele Gesetzmäßigkeiten einfach nicht mehr: Die Elemente verhalten sich anders, als wir es gewöhnt sind.

Deshalb ist viel neue Grundlagenforschung nötig, um zu verstehen, was im Nanometerbereich vor sich geht", erklärt Dr. Harald Graaf, wissenschaftlicher Assistent an der Professur Optische Spektroskopie und Molekülphysik der TU Chemnitz. Dass in Zukunft kein Weg mehr an der Nanotechnologie vorbeiführen wird, da sind sich die Wissenschaftler einig - eine praktische Anwendung ist die Signalverarbeitung in logischen Strukturen. Bisher läuft sie mit elektrischen Signalen, doch hier lässt sich die Geschwindigkeit nicht mehr steigern. Damit Computerrechner trotzdem immer schneller arbeiten können, muss ein Ersatz für die elektrischen Signale her. Eine Möglichkeit: der Einsatz von Photonen. Photonen sind die Bausteine der elektromagnetischen Strahlung, die sowohl Teilchen- als auch Welleneigenschaften besitzen. Zur elektromagnetischen Strahlung gehört auch das für das menschliche Auge sichtbare Licht.

Damit diese so genannte optische Signalverarbeitung funktioniert, müssen auf den Oberflächen der Bauteile Strukturen aufgebracht werden, die Photonen aufnehmen und abgeben können. Doch welche Materialien eigenen sich dafür? Dieser Frage gehen derzeit Physiker der TU Chemnitz nach. "Präparation und Charakterisierung ein- und zweidimensionaler optisch aktiver Nanostrukturen mittels Rastersondenlithographie" heißt ihr Projekt, das die Deutsche Forschungsgemeinschaft (DFG) für eine Laufzeit von drei Jahren mit rund 190.000 Euro fördert.

Mit diesem Geld wird unter anderem ein Diplomand der Professur als wissenschaftlicher Mitarbeiter in das Projekt übernommen. Außerdem wird ein Rasterkraftmikroskop finanziert, das es ermöglicht, Oberflächen mittels Nanolithographie zu bearbeiten. Bei diesem Verfahren wird auf eine sehr glatte Oberfläche - die Chemnitzer Forscher arbeiten mit Silizium - eine dünne so genannte organische Schicht aufgebracht. Diese verhindert, dass das Silizium an der Luft mit dem Sauerstoff eine Verbindung eingeht und oxidiert. Anschließend fährt die nanometerfeine Spitze des Rasterkraftmikroskops über die Oberfläche. Wird an sie eine Spannung angelegt, so wird genau an dieser Stelle Sauerstoff durch die organische Schicht transportiert. Erreicht der Sauerstoff das darunterliegende Silizium so wird dieses zu Siliziumoxid oxidiert. An diese Siliziumoxidstrukturen auf der Oberfläche binden die Wissenschaftler in einem weiteren Schritt einen in Wasser gelösten Farbstoff - ein so genanntes optisch aktives Material. Das lässt sich, wenn es beispielsweise von Laserlicht angestrahlt wird, anregen und leuchtet nun. Dieses Leuchten kann so genau gesteuert werden, dass es als optisches Signal dienen kann.

"Wir suchen im Rahmen des Projektes zum einen geeignete Farbstoffe. Zum anderen erforschen wir die hergestellten Strukturen, zum Beispiel hinsichtlich ihrer Haltbarkeit", erklärt Graaf. "Wir planen eine Kooperation mit der Juniorprofessur Nichtklassische Synthesemethoden, weil die Forschung einige chemische Themen anschneidet. Da holen wir uns dann Experten aus dem eigenen Haus mit ins Boot."

Mit Hilfe der Nanolithographie haben die Chemnitzer Wissenschaftler im vergangenen Jahr bereits das damals kleinste Fußballfeld der Welt hergestellt - es ist so winzig, dass es etwa 1.000 Mal auf die Querschnittsfläche eines menschlichen Haares passt. "Die dabei gesammelten Erfahrungen mit dieser Technik bringen wir jetzt in das neue Projekt mit ein. Damals haben wir bereits nanometergroße Strukturen auf Oberflächen aufgebracht, diesmal binden wir an diese Strukturen noch Farbstoffe und bringen sie damit zum Leuchten", zeigt Prof. Dr. Christian von Borczyskowski, Inhaber der Professur Optische Spektroskopie und Molekülphysik, den Fortschritt der Forschung auf. "Weltweit wird an der Nanotechnologie geforscht - aber es wird sehr wenig veröffentlicht, da noch nicht immer sicher ist, dass die Ergebnisse ausreichend fundiert sind", so Dr. Harald Graaf. "Es gibt bei diesem Forschungsgebiet noch viel Ungewissheit und damit immer neue Probleme - aber das ist auch gerade die Herausforderung!" Dieser Herausforderung können sich auch die Chemnitzer Physikstudenten stellen. Sie reisen dabei nicht nur in den spannenden Nanokosmos, sondern auch in eine zukunftsweisende Arbeitswelt.

Weitere Informationen erteilt Dr. Harald Graaf, Telefon 0371 531-34807, E- Mail harald.graaf@physik.tu-chemnitz.de.

Katharina Thehos | TU Chemnitz
Weitere Informationen:
http://www.tu-chemnitz.de
http://www.tu-chemnitz.de/tu/presse/

Weitere Berichte zu: Molekülphysik Nanotechnologie Photon Spektroskopie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten