Computersimulation: Unbewusste Verarbeitung von Bildinformation im Gehirn

Nicht jede Bildinformation, die unser Auge aufnimmt, nehmen wir bewusst wahr. Konzentrieren wir uns im Verkehrsgeschehen auf die Straße, ignorieren wir Szenen am Straßenrand, obwohl wir sie „sehen“. Dass diese visuellen Informationen dennoch im Gehirn verarbeitet und im Gedächtnis gespeichert werden, beweisen verschiedene Experimente in der Psychologie.

Auf der Suche nach den neuronalen Grundlagen für dieses Phänomen ist es Wissenschaftlern des Bernstein Center for Computational Neuroscience und der Universität Göttingen gelungen, die unbewusste Verarbeitung von Bildinformation am Computer zu simulieren. Das Team um Hecke Schrobsdorff und Dr. J. Michael Herrmann hat dazu eine mathematische Grundlage für ein psychologisches Modell zur Reizverarbeitung formuliert. Auf diese Weise lassen sich experimentelle Ergebnisse quantitativ reproduzieren. Die Forschungsergebnisse wurden in der Zeitschrift „Connection Science“ veröffentlicht.

Objekte, die wir kurz zuvor gesehen haben, erkennen wir schnell wieder. Dieses Phänomen wird als positives Priming bezeichnet. Der gegenteilige Effekt ist das negative Priming: Eine von uns ignorierte Bildinformation wird weniger schnell wiedererkannt – ein Beweis dafür, dass unser Gehirn sie verarbeitet hat, ohne sie bewusst wahrzunehmen. Die Wissenschaft kann negatives Priming in einem psychologischen Test messen. Dazu werden Probanden zwei übereinander gelagerte Strichzeichnungen – eine rote und eine grüne – gezeigt. Die Versuchspersonen sollen benennen, was das grüne Bild darstellt. Die rote Strichzeichnung stört bei der Aufgabe und muss ignoriert werden. Anschließend wird die Prozedur mit anderen Zeichnungen wiederholt. Dabei entspricht die grüne Zeichnung der Figur, die beim ersten Durchgang rot dargestellt war und nicht beachtet werden sollte. Probanden reagieren nun um wenige Millisekunden langsamer auf die Frage, was dort zu sehen ist.

Die Wissenschaft fragt nach den Ursachen dieser unterschiedlichen Reizverarbeitung. Wird ein ignorierter Reiz über längere Zeit im Gehirn aktiv unterdrückt und deshalb nicht erkannt? Oder ist das Objekt als „zu ignorieren“ gestempelt, was einen Konflikt erzeugt mit der neuen Anforderung, darauf jetzt doch zu reagieren? „Psychologen formulieren ihre Modelle in Sätzen – eine quantitative Aussage machen sie damit nicht“, erläutert Hecke Schrobsdorff. Um die Erkenntnisse psychologischer Tests „quantifizieren“ zu können, haben die Göttinger Wissenschaftler jetzt eine mathematische Grundlage entwickelt. Sie basiert in diesem Fall auf der Idee, dass der rote und grüne Reiz parallel verarbeitet werden, wobei jedoch die Prozessierung relevanter Reize forciert wird.

Damit das grüne Bild erkannt wird, muss die Verarbeitung des grünen Reizes einen Schwellenwert überschritten haben, der von dem roten Reiz noch nicht erreicht wurde. Der Schwellenwert selbst steigt mit dem Verarbeitungsprozess an. Ist das grüne Bild dem Betrachter kurz zuvor als roter Reiz begegnet, verlangsamt dies die Reizverarbeitung; sie wird durch das Aufeinandertreffen nicht miteinander vereinbarer Repräsentationen erschwert. Die Forscher können mit ihren Modell die experimentell gewonnenen Messwerte sehr genau reproduzieren. „Mit unserer computerbasierten Simulation lassen sich sowohl positives als auch negatives Priming erklären“, so Hecke Schrobsdorff. Ziel des Projekts ist es, auch Aspekte anderer psychologischer Testverfahren in das Computermodell zu integrieren, so dass testbare quantitative Vorhersagen unterschieden werden können.

Originalveröffentlichung:
H. Schrobsdorff, M. Ihrke, B. Kabisch, J. Behrendt, M.Hasselhorn and J.M. Herrmann (2007). A computational approach to negative priming. Connection Science 19 (3), 203-221.
Kontakt:
Dr. J. Michael Herrmann
Hecke Schrobsdorff
Universität Göttingen – Institut für Nichtlineare Dynamik
Max-Planck-Institut für Dynamik und Selbstorganisation
Bunsenstraße 10, 37073 Göttingen
Telefon (0551) 5176-424, -441
e-mail: michael@nld.ds.mpg.de
hecke@nld.ds.mpg.de
Die Bernstein Centers for Computational Neuroscience (BCCN) sind vier vom BMBF geförderte Zentren in Berlin, Freiburg, Göttingen und München. In dem interdisziplinären Netzwerk werden Experiment, Datenanalyse und Computersimulation auf der Grundlage wohl definierter theoretischer Konzepte vereint. Zentrales Anliegen der Computational Neuroscience ist die Aufklärung der neuronalen Grundlagen von Hirnleistungen, die so z.B. zu neuen Therapien bei neurodegenerativen Krankheiten und Innovationen in der Neuroprothetik führen.

Das BCCN Göttingen ist ein Verbundprojekt der Georg-August-Universität Göttingen, des Max-Planck-Instituts für Dynamik und Selbstorganisation, des Max-Planck-Instituts für biophysikalische Chemie, des Max-Planck-Instituts für experimentelle Medizin, des Deutschen Primatenzentrums und der Otto Bock HealthCare GmbH.

Media Contact

Dr. Tobias Niemann idw

Weitere Informationen:

http://www.bccn-goettingen.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer