Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Computersimulation: Unbewusste Verarbeitung von Bildinformation im Gehirn

22.10.2007
Forscher entwickeln mathematische Grundlage für psychologisches Modell zur Reizverarbeitung

Nicht jede Bildinformation, die unser Auge aufnimmt, nehmen wir bewusst wahr. Konzentrieren wir uns im Verkehrsgeschehen auf die Straße, ignorieren wir Szenen am Straßenrand, obwohl wir sie "sehen". Dass diese visuellen Informationen dennoch im Gehirn verarbeitet und im Gedächtnis gespeichert werden, beweisen verschiedene Experimente in der Psychologie.

Auf der Suche nach den neuronalen Grundlagen für dieses Phänomen ist es Wissenschaftlern des Bernstein Center for Computational Neuroscience und der Universität Göttingen gelungen, die unbewusste Verarbeitung von Bildinformation am Computer zu simulieren. Das Team um Hecke Schrobsdorff und Dr. J. Michael Herrmann hat dazu eine mathematische Grundlage für ein psychologisches Modell zur Reizverarbeitung formuliert. Auf diese Weise lassen sich experimentelle Ergebnisse quantitativ reproduzieren. Die Forschungsergebnisse wurden in der Zeitschrift "Connection Science" veröffentlicht.

Objekte, die wir kurz zuvor gesehen haben, erkennen wir schnell wieder. Dieses Phänomen wird als positives Priming bezeichnet. Der gegenteilige Effekt ist das negative Priming: Eine von uns ignorierte Bildinformation wird weniger schnell wiedererkannt - ein Beweis dafür, dass unser Gehirn sie verarbeitet hat, ohne sie bewusst wahrzunehmen. Die Wissenschaft kann negatives Priming in einem psychologischen Test messen. Dazu werden Probanden zwei übereinander gelagerte Strichzeichnungen - eine rote und eine grüne - gezeigt. Die Versuchspersonen sollen benennen, was das grüne Bild darstellt. Die rote Strichzeichnung stört bei der Aufgabe und muss ignoriert werden. Anschließend wird die Prozedur mit anderen Zeichnungen wiederholt. Dabei entspricht die grüne Zeichnung der Figur, die beim ersten Durchgang rot dargestellt war und nicht beachtet werden sollte. Probanden reagieren nun um wenige Millisekunden langsamer auf die Frage, was dort zu sehen ist.

... mehr zu:
»Bildinformation »Priming

Die Wissenschaft fragt nach den Ursachen dieser unterschiedlichen Reizverarbeitung. Wird ein ignorierter Reiz über längere Zeit im Gehirn aktiv unterdrückt und deshalb nicht erkannt? Oder ist das Objekt als "zu ignorieren" gestempelt, was einen Konflikt erzeugt mit der neuen Anforderung, darauf jetzt doch zu reagieren? "Psychologen formulieren ihre Modelle in Sätzen - eine quantitative Aussage machen sie damit nicht", erläutert Hecke Schrobsdorff. Um die Erkenntnisse psychologischer Tests "quantifizieren" zu können, haben die Göttinger Wissenschaftler jetzt eine mathematische Grundlage entwickelt. Sie basiert in diesem Fall auf der Idee, dass der rote und grüne Reiz parallel verarbeitet werden, wobei jedoch die Prozessierung relevanter Reize forciert wird.

Damit das grüne Bild erkannt wird, muss die Verarbeitung des grünen Reizes einen Schwellenwert überschritten haben, der von dem roten Reiz noch nicht erreicht wurde. Der Schwellenwert selbst steigt mit dem Verarbeitungsprozess an. Ist das grüne Bild dem Betrachter kurz zuvor als roter Reiz begegnet, verlangsamt dies die Reizverarbeitung; sie wird durch das Aufeinandertreffen nicht miteinander vereinbarer Repräsentationen erschwert. Die Forscher können mit ihren Modell die experimentell gewonnenen Messwerte sehr genau reproduzieren. "Mit unserer computerbasierten Simulation lassen sich sowohl positives als auch negatives Priming erklären", so Hecke Schrobsdorff. Ziel des Projekts ist es, auch Aspekte anderer psychologischer Testverfahren in das Computermodell zu integrieren, so dass testbare quantitative Vorhersagen unterschieden werden können.

Originalveröffentlichung:
H. Schrobsdorff, M. Ihrke, B. Kabisch, J. Behrendt, M.Hasselhorn and J.M. Herrmann (2007). A computational approach to negative priming. Connection Science 19 (3), 203-221.
Kontakt:
Dr. J. Michael Herrmann
Hecke Schrobsdorff
Universität Göttingen - Institut für Nichtlineare Dynamik
Max-Planck-Institut für Dynamik und Selbstorganisation
Bunsenstraße 10, 37073 Göttingen
Telefon (0551) 5176-424, -441
e-mail: michael@nld.ds.mpg.de
hecke@nld.ds.mpg.de
Die Bernstein Centers for Computational Neuroscience (BCCN) sind vier vom BMBF geförderte Zentren in Berlin, Freiburg, Göttingen und München. In dem interdisziplinären Netzwerk werden Experiment, Datenanalyse und Computersimulation auf der Grundlage wohl definierter theoretischer Konzepte vereint. Zentrales Anliegen der Computational Neuroscience ist die Aufklärung der neuronalen Grundlagen von Hirnleistungen, die so z.B. zu neuen Therapien bei neurodegenerativen Krankheiten und Innovationen in der Neuroprothetik führen.

Das BCCN Göttingen ist ein Verbundprojekt der Georg-August-Universität Göttingen, des Max-Planck-Instituts für Dynamik und Selbstorganisation, des Max-Planck-Instituts für biophysikalische Chemie, des Max-Planck-Instituts für experimentelle Medizin, des Deutschen Primatenzentrums und der Otto Bock HealthCare GmbH.

Dr. Tobias Niemann | idw
Weitere Informationen:
http://www.bccn-goettingen.de

Weitere Berichte zu: Bildinformation Priming

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie