Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanoteilchen im Kampf gegen Krebs

16.10.2007
Mit Magnetosomen den Tumor überhitzen

Mit kleinsten Magnetteilchen verfolgt die Krebsforschung einen neuen Therapieansatz, der weitaus schonender sein soll als herkömmliche Methoden wie Chemotherapie oder klassische Hyperthermieverfahren. Nanopartikel können aufgrund ihrer geringen Größe problemlos in kleinste Kapillargefäße eindringen.

Geeignete Nanopartikel sind z.B. Magnetosome, die in der Physikalisch-Technischen Bundesanstalt (PTB) sichtbar gemacht werden konnten. Diese Magnetosome haben eine Größe von 40 nm und bestehen aus einem Magnetit-Kern und einer Lipid-Membran. Die PTB erforscht im Rahmen eines Verbundprojektes mit der Technischen Universität (TU) Braunschweig sowie zwei Industriefirmen die Eigenschaften von Nanopartikeln.

Die für die Krebstherapie verwendeten Nanopartikel wie Magnetosome sind aus Eisenoxid (Magnetit); sie sind magnetisch und werden in einer Flüssigkeit direkt in den Tumor injiziert, so dass nur das Tumorgewebe durch Wärme, die durch Anlegen eines Wechselmagnetfeldes entsteht, behandelt wird. Gesundes Gewebe bleibt weitestgehend unbeschädigt. Es ist dabei wichtig, dass die Partikel im Blut vereinzelt bleiben und nicht verklumpen. Nur dann können sie bei dem Patienten eingesetzt werden, ohne Schäden zu verursachen.

Mit Hilfe der Magnetkraftmikroskopie haben die Wissenschaftler nachgewiesen, dass einzelne Magnetosome eindomänige Nanomagnete sind. Ihre Magnetisierung kann durch Anlegen eines Magnetfeldes ausgerichtet werden. Bei Anlegen von Wechselfeldern kommt es zu Ummagnetisierungsprozessen, die zu einer Erwärmung der Teilchen führen. Im Gegensatz zu vielen anderen Hyperthermieverfahren kann hierbei die Wärme exakt im Tumorgewebe deponiert werden. Das sensibilisiert die instabilen, schnellwachsenden Krebszellen entweder für eine anschließende Chemotherapie oder schädigt sie gar irreparabel.

Die Nanopartikel müssen für therapeutische Zwecke eine einheitliche Größe haben, damit sie einheitlich auf eine Frequenz des magnetischen Wechselfeldes ansprechen und ihr Potential voll ausgeschöpft werden kann. Daher werden im Rahmen des Verbundprojektes ihre Eigenschaften erforscht. Das Ziel ist die Erstellung eines Demonstrators für ein kostengünstiges transportables Messsystem für magnetische Nanopartikel, das der Qualitätssicherung bei den medizinischen Anwendungen dienen soll. An dem medizintechnischen Projekt, das durch das Bundesministerium für Bildung und Forschung unterstützt wird, sind beide Standorte der PTB beteiligt. Das Ziel der Wissenschaftler in Braunschweig ist vor allem die quantitative Messung der Magnetisierung von Nanopartikeln. Das Fernziel ist auf eine quantitative Magnetkraftmikroskopie ausgerichtet. Im Institut Berlin geht es um die Magnetorelaxometrie mit Hilfe von SQUID-Magnetometern.

Ansprechpartnerin:
Dr. Sibylle Sievers,
PTB-Arbeitsgruppe 2.51
Magnetische Messtechnik,
Telefon: (0531) 592 - 1414
E-Mail: sibylle.sievers@ptb.de

Erika Schow | idw
Weitere Informationen:
http://www.ptb.de/

Weitere Berichte zu: Magnetosome Nanopartikel Tumorgewebe

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen