Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanoteilchen im Kampf gegen Krebs

16.10.2007
Mit Magnetosomen den Tumor überhitzen

Mit kleinsten Magnetteilchen verfolgt die Krebsforschung einen neuen Therapieansatz, der weitaus schonender sein soll als herkömmliche Methoden wie Chemotherapie oder klassische Hyperthermieverfahren. Nanopartikel können aufgrund ihrer geringen Größe problemlos in kleinste Kapillargefäße eindringen.

Geeignete Nanopartikel sind z.B. Magnetosome, die in der Physikalisch-Technischen Bundesanstalt (PTB) sichtbar gemacht werden konnten. Diese Magnetosome haben eine Größe von 40 nm und bestehen aus einem Magnetit-Kern und einer Lipid-Membran. Die PTB erforscht im Rahmen eines Verbundprojektes mit der Technischen Universität (TU) Braunschweig sowie zwei Industriefirmen die Eigenschaften von Nanopartikeln.

Die für die Krebstherapie verwendeten Nanopartikel wie Magnetosome sind aus Eisenoxid (Magnetit); sie sind magnetisch und werden in einer Flüssigkeit direkt in den Tumor injiziert, so dass nur das Tumorgewebe durch Wärme, die durch Anlegen eines Wechselmagnetfeldes entsteht, behandelt wird. Gesundes Gewebe bleibt weitestgehend unbeschädigt. Es ist dabei wichtig, dass die Partikel im Blut vereinzelt bleiben und nicht verklumpen. Nur dann können sie bei dem Patienten eingesetzt werden, ohne Schäden zu verursachen.

Mit Hilfe der Magnetkraftmikroskopie haben die Wissenschaftler nachgewiesen, dass einzelne Magnetosome eindomänige Nanomagnete sind. Ihre Magnetisierung kann durch Anlegen eines Magnetfeldes ausgerichtet werden. Bei Anlegen von Wechselfeldern kommt es zu Ummagnetisierungsprozessen, die zu einer Erwärmung der Teilchen führen. Im Gegensatz zu vielen anderen Hyperthermieverfahren kann hierbei die Wärme exakt im Tumorgewebe deponiert werden. Das sensibilisiert die instabilen, schnellwachsenden Krebszellen entweder für eine anschließende Chemotherapie oder schädigt sie gar irreparabel.

Die Nanopartikel müssen für therapeutische Zwecke eine einheitliche Größe haben, damit sie einheitlich auf eine Frequenz des magnetischen Wechselfeldes ansprechen und ihr Potential voll ausgeschöpft werden kann. Daher werden im Rahmen des Verbundprojektes ihre Eigenschaften erforscht. Das Ziel ist die Erstellung eines Demonstrators für ein kostengünstiges transportables Messsystem für magnetische Nanopartikel, das der Qualitätssicherung bei den medizinischen Anwendungen dienen soll. An dem medizintechnischen Projekt, das durch das Bundesministerium für Bildung und Forschung unterstützt wird, sind beide Standorte der PTB beteiligt. Das Ziel der Wissenschaftler in Braunschweig ist vor allem die quantitative Messung der Magnetisierung von Nanopartikeln. Das Fernziel ist auf eine quantitative Magnetkraftmikroskopie ausgerichtet. Im Institut Berlin geht es um die Magnetorelaxometrie mit Hilfe von SQUID-Magnetometern.

Ansprechpartnerin:
Dr. Sibylle Sievers,
PTB-Arbeitsgruppe 2.51
Magnetische Messtechnik,
Telefon: (0531) 592 - 1414
E-Mail: sibylle.sievers@ptb.de

Erika Schow | idw
Weitere Informationen:
http://www.ptb.de/

Weitere Berichte zu: Magnetosome Nanopartikel Tumorgewebe

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie