Lichtsignale bei höchsten Bitraten sichtbar

Das Institut für Hochfrequenztechnik und Quantenelektronik (IHQ) der Universität Karlsruhe (TH) ist in der Lage, künftig Lichtsignale und Sequenzen selbst bei höchsten Bitraten zu visualisieren.

„Damit wird die Fridericiana weltweit eine der wenigen Universitäten sein, die optische Signale bei einer extrem hohen Bitrate von 130Gbit pro Sekunde übertragen, sichtbar machen und analysieren kann“, so Philipp Vorreau vom IHQ.

Ziel ist es, neue Übertragungs- und Vermittlungstechniken bei den optischen Kommunikations-Netzwerken der nächsten Generation zu erforschen. Neue Übertragungstechniken werden dringend benötigt, denn das Datenaufkommen verdoppelt sich im Jahrestakt. Während Shakespeare mit seinem Lebenswerk gerade mal 5MByte an Daten generierte, so erzeugt heute ein Anwender mit einem einzigen Digitalfoto die gleiche Datenmenge.

Möglich wird die Messung von ultra-kurzen Lichtsignalen durch die Spende einer Präzisionszeitbasis durch die Firma Agilent Technologies. Jack Wenstrand, Director of University Relations von Agilent freute sich heute, 19. 09 .07, bei der Übergabe des Gerätes über „die exzellente Forschungs-Zusammenarbeit mit der Universität Karlsruhe als eine von derzeit vier Schlüsseluniversitäten im Rahmen unseres weltweiten Partnerschaftsprogramms“. Neben der Stanford University, Kalifornien, der University of California, Berkeley und der Tsinghua University, Beijing, China ist die Universität Karlsruhe seit 2005 im Team der weltweiten Schlüsseluniversitäten. Ziel sei unter anderem, Technologien aus der universitären Forschung zu fördern und die aktuellsten akademischen Trends in die Produktentwicklung von Agilent einfließen zu lassen.

Die Präzisionzeitbasis im Wert von über 30.000 EUR sorgt in Verbindung mit einem Sampling-Oszilloskop für sehr geringe Zeitfluktuationen bei der Messung von Lichtsignalen. Geringe Zeitfluktuation bedeutet, dass die zu messenden Lichtsignale sehr regelmäßig kommen. Darüber hinaus erhöht das Gerät die Zeitauflösung, des Messsystems auf 2ps/Einheit. Zur Veranschaulichung: In einer Pikosekunde (0,000 000 000 001 Sekunden) kommt Licht gerade einmal 0,33 mm (Durchmesser eines dicken Haares) weit. Beides – also eine geringe Zeitfluktuation und eine hohe Zeitauflösung – ist die Voraussetzung dafür, um ultra-schnelle Lichtsignale zuverlässig messen zu können.

Der Messaufbau mit der Präzisionszeitbasis wird auch im Rahmen eines EU Forschungsprojektes zum Einsatz kommen. Das vom IHQ geleitete Forschungsprojekt trägt den Namen TRIUMPH (Transparent Ring Interconnection Using Multi-wavelength PHotonic switches) und ist auf drei Jahre angelegt. Ziel ist die Entwicklung einer neuen Netzwerkarchitektur bzw. von Teilsystemen für zukünftige breitbandige Zugangsnetzwerke im Metrobereich.

An diesem Projekt sind acht europäische Forschungseinrichtungen beteiligt (siehe auch http://www.ihq.uni-karlsruhe.de/research/projects/TRIUMPH/).
Jack Wenstrand, Director of University Relations, Agilent Technologies (links) und Philipp Vorreau, Institut für Hochfrequenztechnik und Datenelektronik bei der Übergabe eines Zertifikates, stellvertretend für die Präzisionszeitbasis
Das Foto kann in druckfähiger Qualität bei der Abteilung Presse und Kommunikation der Universität Karlsruhe (TH) angefordert werden:

presse@verwaltung.uni-karlsruhe.de oder 0721/608-2089.

Weitere Informationen:
Monika Landgraf
Presse und Kommunikation
Universität Karlsruhe (TH)
Telefon: 0721/608-8126
E-Mail: Monika.Landgraf@verwaltung.uni-karlsruhe.de
Tanja Thoma-Ly
Leiterin Unternehmenskommunikation
Agilent Technologies Deutschland GmbH
Telefon: 07031/464-2939
E-Mail: tanja_thoma-ly@agilent.com

Media Contact

Monika Landgraf Universität Karlsruhe (TH)

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer