Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtsignale bei höchsten Bitraten sichtbar

19.09.2007
Agilent Technologies spendet Präzisionszeitbasis

Das Institut für Hochfrequenztechnik und Quantenelektronik (IHQ) der Universität Karlsruhe (TH) ist in der Lage, künftig Lichtsignale und Sequenzen selbst bei höchsten Bitraten zu visualisieren.

„Damit wird die Fridericiana weltweit eine der wenigen Universitäten sein, die optische Signale bei einer extrem hohen Bitrate von 130Gbit pro Sekunde übertragen, sichtbar machen und analysieren kann“, so Philipp Vorreau vom IHQ.

Ziel ist es, neue Übertragungs- und Vermittlungstechniken bei den optischen Kommunikations-Netzwerken der nächsten Generation zu erforschen. Neue Übertragungstechniken werden dringend benötigt, denn das Datenaufkommen verdoppelt sich im Jahrestakt. Während Shakespeare mit seinem Lebenswerk gerade mal 5MByte an Daten generierte, so erzeugt heute ein Anwender mit einem einzigen Digitalfoto die gleiche Datenmenge.

Möglich wird die Messung von ultra-kurzen Lichtsignalen durch die Spende einer Präzisionszeitbasis durch die Firma Agilent Technologies. Jack Wenstrand, Director of University Relations von Agilent freute sich heute, 19. 09 .07, bei der Übergabe des Gerätes über „die exzellente Forschungs-Zusammenarbeit mit der Universität Karlsruhe als eine von derzeit vier Schlüsseluniversitäten im Rahmen unseres weltweiten Partnerschaftsprogramms“. Neben der Stanford University, Kalifornien, der University of California, Berkeley und der Tsinghua University, Beijing, China ist die Universität Karlsruhe seit 2005 im Team der weltweiten Schlüsseluniversitäten. Ziel sei unter anderem, Technologien aus der universitären Forschung zu fördern und die aktuellsten akademischen Trends in die Produktentwicklung von Agilent einfließen zu lassen.

Die Präzisionzeitbasis im Wert von über 30.000 EUR sorgt in Verbindung mit einem Sampling-Oszilloskop für sehr geringe Zeitfluktuationen bei der Messung von Lichtsignalen. Geringe Zeitfluktuation bedeutet, dass die zu messenden Lichtsignale sehr regelmäßig kommen. Darüber hinaus erhöht das Gerät die Zeitauflösung, des Messsystems auf 2ps/Einheit. Zur Veranschaulichung: In einer Pikosekunde (0,000 000 000 001 Sekunden) kommt Licht gerade einmal 0,33 mm (Durchmesser eines dicken Haares) weit. Beides - also eine geringe Zeitfluktuation und eine hohe Zeitauflösung - ist die Voraussetzung dafür, um ultra-schnelle Lichtsignale zuverlässig messen zu können.

Der Messaufbau mit der Präzisionszeitbasis wird auch im Rahmen eines EU Forschungsprojektes zum Einsatz kommen. Das vom IHQ geleitete Forschungsprojekt trägt den Namen TRIUMPH (Transparent Ring Interconnection Using Multi-wavelength PHotonic switches) und ist auf drei Jahre angelegt. Ziel ist die Entwicklung einer neuen Netzwerkarchitektur bzw. von Teilsystemen für zukünftige breitbandige Zugangsnetzwerke im Metrobereich.

An diesem Projekt sind acht europäische Forschungseinrichtungen beteiligt (siehe auch http://www.ihq.uni-karlsruhe.de/research/projects/TRIUMPH/).
Jack Wenstrand, Director of University Relations, Agilent Technologies (links) und Philipp Vorreau, Institut für Hochfrequenztechnik und Datenelektronik bei der Übergabe eines Zertifikates, stellvertretend für die Präzisionszeitbasis
Das Foto kann in druckfähiger Qualität bei der Abteilung Presse und Kommunikation der Universität Karlsruhe (TH) angefordert werden:

presse@verwaltung.uni-karlsruhe.de oder 0721/608-2089.

Weitere Informationen:
Monika Landgraf
Presse und Kommunikation
Universität Karlsruhe (TH)
Telefon: 0721/608-8126
E-Mail: Monika.Landgraf@verwaltung.uni-karlsruhe.de
Tanja Thoma-Ly
Leiterin Unternehmenskommunikation
Agilent Technologies Deutschland GmbH
Telefon: 07031/464-2939
E-Mail: tanja_thoma-ly@agilent.com

Monika Landgraf | Universität Karlsruhe (TH)
Weitere Informationen:
http://www.uni-karlsruhe.de
http://www.presse.uni-karlsruhe.de/8072.php

Weitere Berichte zu: IHQ Lichtsignal Präzisionszeitbasis Zeitfluktuation

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten