Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein "Ultramikroskop" für Nanostrukturen - Konzept zur Beobachtung ultraschneller Vorgänge

04.09.2007
Metallische, aus nur einigen tausend Atomen bestehende Nanostrukturen weisen optische und elektronische Eigenschaften auf, die bei ausgedehnten Festkörpern nicht vorkommen.

Die Einwirkung von elektromagnetischer Strahlung, also Licht, führt in Nanopartikeln zu kollektiven kohärenten Schwingungen der Elektronen, die auch Oberflächenplasmonen genannt werden.

Ein Team von Wissenschaftlern der Ludwig-Maximilians-Universität (LMU) München, des Max-Planck-Instituts für Quantenoptik in Garching (MPQ) und der Georgia State University (Atlanta, USA), hat jetzt in der Fachzeitschrift "Nature Photonics" ein neuartiges Mikroskop vorgeschlagen, das es erstmals ermöglichen würde, die ultraschnelle Dynamik dieser plasmonischen Felder mit hoher räumlicher und zeitlicher Auflösung zu beobachten. Von einem besseren Verständnis dieser kollektiven Anregungen würden insbesondere Anwendungen in der optischen und optoelektronischen Informationsverarbeitung, -übertragung und -speicherung profitieren. Ebenso würde das Ultramikroskop die Spektroskopie einzelner (Bio)moleküle erleichtern, bei denen Nanopartikel als Antenne die Wechselwirkung mit Licht verstärken.

Ohne es zu wissen, nutzten schon die Hersteller von gefärbten gläsernen Gefäßen im antiken Rom beziehungsweise von Kirchenfenstern im Mittelalter die besonderen Eigenschaften metallischer Nanopartikel aus. Indem sie der Glasschmelze Goldstaub zusetzten, verliehen sie den Gläsern eine rötlich schimmernde Farbe. Heute wissen die Fachleute, auf welche Vorgänge dieser Effekt zurückgeht. Nanopartikel, also Teilchen mit einer Ausdehnung von einigen wenigen bis 100 Nanometern - das ist kleiner als die Wellenlänge des sichtbaren Lichtes von etwa 400 - 800 Nanometern - bestehen aus nur einigen tausend Atomen. Wenn sichtbares Licht auf so ein Partikel fällt, sind die im Metall frei beweglichen Leitungselektronen dem elektrischen Lichtfeld ausgesetzt und werden verschoben.

Da die Struktur sehr klein ist, kommen sie aber nicht sehr weit, sondern stauen sich mal auf der einen, mal auf der anderen Seite. Auf diese Weise kommt es zu synchronisierten kohärenten Schwingungen des gesamten Elektronenkollektivs. Solche Schwingungen haben gewissermaßen Teilcheneigenschaften und werden daher auch Oberflächenplasmonen genannt. Die rötliche Farbe in antiken römischen Gefäßen und alten Kirchenfenstern basiert darauf, dass ein Teil des sichtbaren Spektrums von den Goldnanopartikeln "verschluckt" und in Plasmonen umgewandelt wird, so dass das durchscheinende Restlicht in den Komplementärfarben leuchtet.

"Plasmonen erzeugen sehr hohe elektromagnetische Felder am Ort und in der unmittelbaren Umgebung des Nanoteilchens", erläutert Dr. Matthias Kling, Nachwuchsgruppenleiter am MPQ. "Aber wie sich diese Plasmonenfelder auf- und wieder abbauen, ist noch nicht im Detail verstanden. Die schnellsten dieser kollektiven Bewegungen spielen sich innerhalb von einigen hundert Attosekunden ab, wobei eine Attosekunde ein Milliardstel von einem Milliardstel einer Sekunde ist. Sie gehören damit zu den kürzesten in der Natur zu beobachtenden Prozessen."

Ein neuartiges Verfahren, die Dynamik plasmonischer Felder mit höchster Genauigkeit zeitlich aufzulösen und räumlich abzubilden, hat nun der theoretische Physiker Professor Mark Stockman von der Georgia State University (Atlanta, Georgia, USA) gemeinsam mit Experimentalphysikern der LMU und des MPQ erarbeitet. In ihrem Modell simulieren die Wissenschaftler zunächst eine Anordnung von Silber-Nanopartikeln auf einer Oberfläche, die mit extrem kurzen, nur einige Femtosekunden währenden Pulsen beschossen werden. Eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde.

Unter der Einwirkung eines Lichtpulses aus nur wenigen Schwingungsperioden entstehen Plasmonenfelder, deren Amplituden und Eigenfrequenzen - sie liegen zwischen nahem Infrarot und nahem Ultraviolett - von der Größe, Form und Umgebung des jeweiligen Nanoteilchens abhängen. Die Dynamik der Plasmonen wird nun "abgefragt", indem ein mit der Anregung synchronisierter, etwa 170 Attosekunden langer Laserpuls, dessen Frequenz im Extremen Ultraviolett liegt, auf die Nanostruktur geschickt wird und dort Elektronen freisetzt. Die Energie und räumliche Verteilung dieser so genannten Photoelektronen spiegelt die Eigenschaften der Plasmonen wider, da sie zuvor in deren Feld beschleunigt wurden.

"Bei dem hier vorgelegten Konzept kombinieren wir zwei Verfahren, die jedes für sich bereits Stand der Technik sind: Die "Photoelektronen-Emissionsmikroskopie", kurz PEEM genannt, und die Attosekunden-Streak-Spektroskopie", erklärt Professor Ulf Kleineberg von der LMU. "Wir erhalten dabei eine räumliche Auflösung, die in der Größenordnung der Ausdehnung der Nanopartikel liegt, also einige zehn bis hundert Nanometer beträgt, und erreichen gleichzeitig aufgrund der extrem kurzen Dauer der Attosekundenblitze eine zeitliche Auflösung von etwa hundert Attosekunden. Dieses Messverfahren legt die Grundlage, in Zukunft den Aufbau und die zeitliche Entwicklung dieser Felder zu messen und durch maßgeschneiderte Lichtpulse gezielt zu steuern."

Generell würde dieses nanoplasmonische Ultramikroskop erstmals die direkte Beobachtung ultraschneller Prozesse in Nanosystemen ermöglichen, wie etwa die Umwandlung von Sonnenlicht in elektrische Energie. Die Autoren sehen aber zukünftige Anwendungen dieser Technik vor allem in der Entwicklung von neuartigen Bauelementen, bei denen lokalisierte nanoplasmonische Felder die Aufgaben von Elektronen in der konventionellen Elektronik übernehmen, also Informationen übertragen, verarbeiten und speichern. Der Vorteil läge darin, dass Plasmonen in diesen Nanosystemen Informationsverarbeitung und -übertragung mit sehr viel größeren Frequenzen - etwa 100.000-fach - erlauben als Elektronen in Festkörpern. Auf diese Weise ließen sich vielleicht zukünftig extrem schnelle optoelektronische und optische Systeme für die Informationsverarbeitung realisieren."

Publikation:
"Attosecond nanoplasmonic field microscope", M.I. Stockman, M.F. Kling, U. Kleineberg and F. Krausz

Nature Photonics, advance online publication, 3. September 2007

Ansprechpartner:
Professor Dr. Ferenc Krausz
Department für Physik der LMU
Geschäftsführender Direktor, Max-Planck-Institut für Quantenoptik
Tel.: 089 / 32905 612
Fax: 089 / 32905 649
E-Mail: ferenc.krausz@mpq.mpg.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.munich-photonics.de
http://www.attoworld.de

Weitere Berichte zu: Attosekunde Nanopartikel Nanostruktur Plasmonen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Flashmob der Moleküle
19.01.2017 | Technische Universität Wien

nachricht Verkehrsstau im Nichts
19.01.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise