Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quark-Brei im Teilchen-Zoo

09.07.2007
Der Teilchenbeschleuniger HERA stellte am 30. Juni 2007 seinen Betrieb ein

Kleiner geht fast immer - zumindest in der Teilchenphysik. Der Atomkern setzt sich aus Protonen und Neutronen zusammen. Die bestehen wiederum aus einem Brei von Quarks und Gluonen. Das zeigten die Messungen im Elektron-Proton-Speicherring HERA und widerlegten damit das alte Modell mit nur drei Quarks im Proton. HERA ist Teil des Deutschen Elektronen-Synchrotons (DESY).


Immer kleiner: Ein Atom besteht aus Kern und Hülle. Während Elektronen (gelber Ball) den Atomkern umkreisen, besteht der Kern aus Protonen und Neutronen. Im Inneren der Protonen werden die Quarks (grüne, blaue und rote Kugel) von den Gluonen (blaue Bändchen) zusammengehalten. Bild: DESY in Hamburg

Wissenschaftler der Max-Planck-Institute für Physik in München und Kernphysik in Heidelberg zeichneten hier 15 Jahre lang die Kollision von Protonen und Elektronen auf, um die kleinsten Bestandteile des Protons sichtbar zu machen und so das Standardmodell der Elementarteilchen genau zu überprüfen. Der Teilchenbeschleuniger hat nun am 30. Juni seinen Betrieb eingestellt.

An frontalen Zusammenstößen haben Teilchenphysiker ihre Freude. Indem sie Teilchen aufeinander prallen lassen, fahnden sie nach den kleinsten Bausteinen des Universums. Wenn Teilchen miteinander kollidieren, sprengt die Energie des Zusammenpralls sie in ihre Einzelteile oder verwandelt sie sogar in neue Teilchen. Am DESY in Hamburg schickten Forscher der Max-Planck-Institute für Physik in München und Kernphysik in Heidelberg seit 1992 Protonen und Elektronen auf Kollisionskurs. Sie ließen die Teilchen dabei mit vorher nicht erreichter Energie aufeinanderprallen.

... mehr zu:
»Elektron »Gluon »HERA »ProTon »Quark »Teilchen

Am Samstag, den 30. Juni 2007, stellte nun HERA (Hadron-Elektron-Ring-Anlage) seinen Betrieb ein. Kurz vor Mitternacht wurden die letzten Daten aufgezeichnet und der Beschleuniger für immer abgeschaltet. Der Vorbeschleuniger für HERA wird nun zu einer Synchrotronstrahlungsquelle umgebaut.

Mit einem Festakt feierten weltweit führende Wissenschaftler der Elementarteilchenphysik die einmalige Forschung mit HERA, die die Struktur des Protons wie noch nie zuvor auflöste. Die Wissenschaftler der Max-Planck-Institute haben mit ihren Messungen das Wissen über das Proton revolutioniert. "Die Welt der Elementarteilchen ist deutlich komplizierter als wir je dachten", sagt Christian Kiesling vom Max-Planck-Institut für Physik: "Wir haben in unseren Experimenten den detaillierten Aufbau des Protons sichtbar gemacht und haben somit unser Wissen über die kleinsten Bestandteile der Atomkerne, die Quarks und Gluonen, erheblich vertieft."

Die Geschwindigkeit, mit der die Wissenschaftler in HERA Elektronen und Protonen aufeinander jagten, verdeutlicht ein fiktives Wettrennen mit einem Lichtstrahl: "Auf 1000 Kilometer Rennstrecke - von Schleswig-Holstein bis in die Alpen - kommt das Elektron nur mit einem zehntel Millimeter Abstand nach dem Lichteilchen durchs Ziel, das Proton nur mit einem Meter", erklärt Kiesling: "Auf nahezu Lichtgeschwindigkeit beschleunigte der Speicherring HERA die Teilchen auf einer 6,4 Kilometer langen Kreisbahn und nutze die Energie beim Aufeinandertreffen, um die innere Struktur des Protons auszuleuchten." Dabei gilt: Je höher die Energie, mit der die Elektronen und Protonen im HERA-Ring aufeinander prallen, desto besser wird das räumliche Auflösungsvermögen.

So haben die Detektoren von HERA - H1, Zeus - erstmals die Struktur des Protons bis auf ein Tausendstel seines Durchmessers aufgelöst. "Das brachte völlig überraschende Ergebnisse", so Kiesling. "Unsere Experimente haben gezeigt, dass Protonen aus einem Brei von Quarks und Antiquarks bestehen, und nicht nur wie bisher vermutet aus nur drei Quarks." Als die Forscher versucht haben diese Quarks aus dem Proton herauszuschießen, veränderte sich das Proton in neue Formen, so zum Beispiel in das das Proton-artige Baryon oder zusätzlichen Mesonen. Bei diesen Teilchen sind die Quarks unterschiedlich angeordnet. "Durch die verschiedenen Quark-Konstellationen entstand also ein wahrer Teilchen-Zoo", sagt Kiesling. Die Quarks sortierten sich zwar neu an, konnten aber nie aus dem Proton herausgeschleudert werden, denn etwas hielt sie zusammen.

So konnten die Forscher im Inneren des Protons erstmals die komplizierten Gluonen direkt nachweisen, die die Quarks zusammenhalten. Die Gluonen haben ihren Namen vom Englischen Wort "glue" für Kleber. Diese kleinen Klebeteilchen vermitteln zwischen den Quarks die Starke Kernkraft, die 100 mal stärker ist als die elektrischen Kräfte zwischen Protonen und Elektronen. "Sie funktioniert wie ein Gummiband, das gespannt wird", sagt Kiesling: "Paradoxerweise wird die Kraft zwischen den Quarks mit zunehmendem Abstand immer stärker. Das macht keine andere Kraft, die wir kennen. Wir warten noch auf die schlauen Theoretiker, die das in allen Details beschreiben können". Das versuchten die Forscher Gross, Politzer und Wilczek. Für ihre Theorie der Quantenchromodynamik, die die starken Wechselwirkungen zwischen den Quarks bei kleinen Abständen sehr gut beschreibt, erhielten sie 2004 den Nobelpreis für Physik. Die HERA-Experimente haben somit experimentell geholfen, die Quantenchromodynamik als die Standardtheorie der Starken Wechselwirkungen zwischen den Quarks und Gluonen zu etablieren.

Mit der Theorie ist die Arbeit aber noch nicht abgeschlossen. "Wir müssen nun die bisher gewonnene Datenmenge auswerten und vollständig analysieren", so Kiesling: "Eine Aufgabe, die noch einige Jahre dauern wird". Die Ergebnisse von HERA sind wichtig, um die Daten des neuen Teilchenbeschleunigers "Large Hadron Collider" (LHC) am CERN in Genf zu verstehen. Denn ohne die Struktur des Protons genau zu kennen, werden die Forscher in Genf viele der LHC-Messungen nicht deuten können.

Daher arbeiten die Physiker der HERA- und LHC-Experimente am Max-Planck-Institut schon seit einiger Zeit intensiv zusammen. Die Max-Planck-Forscher planen aber schon weiter. In einer weltweiten Kooperation soll der International Linear Collider (ILC) entstehen. "Wir wollen mit dem ILC eine Weltmaschine bauen, die Elektronen und Positronen bei vielfach höherer Energie als bisher auf Crashkurs schickt. Mit dem ILC soll unter anderem das letzte Puzzleteil des Standardmodells - das Higgs-Boson, das hoffentlich am LHC gefunden wird - auf seine physikalischen Eigenschaften hin untersucht werden. Dies wird mit dem LHC allein nicht möglich sein", sagt Kiesling. Das Higgs-Boson ist ein hypothetisches Bindeteilchen des Standardmodells, das aber als einziges bisher noch nicht nachgewiesen werden konnte.

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Elektron Gluon HERA ProTon Quark Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie