Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

AG Hänggi weiter auf dem Weg zum Quantencomputer

11.06.2007
Durch die Verlängerung des SFB 631 fließen weitere 420.000 Euro an Augsburger Teilprojekt.

Das Augsburger Teilprojekt A5 im DFG-Sonderforschungsbereich 631 "Festkörperbasierte Quanteninformationsverarbeitung: Physikalische Konzepte und Materialaspekte" ist für weitere vier Jahre gesichert. Ziel dieses Teilprojektes, das von Prof. Dr. Dr. h. c. mult. Peter Hänggi, Dr. Habil. Sigmund Kohler (beide Lehrstuhl für Theoretische Physik I der Universität Augsburg) und Prof. Dr. Milena Grifoni (Universität Regensburg) geleitet wird und für das für die kommenden vier Jahre weitere 420.000 Euro bereitgestellt werden, ist die Minimalisierung von Fehlern, die bei Quantengatteroperationen und bei der Erzeugung von festkörperbasierten, korrelierten Quantenzuständen unvermeidlich auftreten.

Der SFB 631, der im Juni 2003 eingerichtet und jetzt um vier Jahre verlängert wurde, ist der einzige Sonderforschungsbereich in Deutschland, der das äußerst zukunftsträchtige Gebiet der festkörperbasierten Quanteninformationsverarbeitung untersucht. Beteiligt sind Forschergruppen der TU-München (Sprecheruniversität), der LMU München und der Bayerischen Akademie der Wissenschaften, die durch Arbeitsgruppen des Max-Planck-Instituts für Quantenoptik, der Universität Regensburg und der Universität Augsburg unterstützt werden.

Fernziel Quantencomputer

Fernziel dieser Forschungen ist die Realisierung eines Quantencomputers. Der Quantencomputer rechnet - statt mit Nullen und Einsen - mit Quantenzuständen, die nicht nur zwei wohldefinierte Zustände einnehmen, sondern auch beliebige Kombinationen dieser Zustände. Er ist damit theoretisch dazu fähig, mehrere Prozesse gleichzeitig auszuführen. "Ein solcher neuartiger Quantencomputer", so Hänggi, "wird in der Lage sein, komplexe Probleme zu lösen, die selbst mit der Verknüpfung aller auf dieser Welt derzeit existierenden klassischen Computer nicht in den Griff zu bekommen zu wären. Ein faszinierender Aspekt dabei ist, dass das Gebiet der Quanteninformation "praktisch alle modernen Naturwissenschaften verbindet: Wichtige Zweige der Mathematik sowie der Informatik und die verschiedensten Disziplinen der Physik steuern Elemente bei, die zur erfolgreichen Realisierung eines Quantencomputers notwendig sind."

Minimalisierung unvermeidlich auftretender Fehler

In Hänggis Arbeitsgruppe wird untersucht, wie die unvermeidlich auftretenden Fehler bei Rechenoperationen minimalisiert werden können, damit die für die Quanteninformationsverarbeitung notwendige Kohärenz und Parallelität möglichst lange aufrechterhalten bleibt. Weiterhin wird im Teilprojekt A5 nach Konzepten geforscht, die es ermöglichen, mittels optimaler Steuerung und Manipulation quantenelektrodynamische, nichtklassiche Korrelationen zwischen verschiedenen Freiheitsgraden zu realisieren. Solche sogenannten "verschränkten Zustände" zwischen verschiedenen System-Freiheitsgraden bilden das Herzstück für eine erfolgreiche Realisierung eines Quantencomputers.

Ansprechpartner:

Prof. Dr. Dr. h. c. mult. Peter Hänggi
Lehrstuhl für Theoretische Physik I
Universität Augsburg
86135 Augsburg
Tel. 0821/598-3250, Fax 0821/598-3222
hanggi@physik.uni-augsburg.de

Klaus P. Prem | idw
Weitere Informationen:
http://www.wmi.badw-muenchen.de/SFB631
http://www.physik.uni-augsburg.de/theo1

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Tauchgang in einen Magneten
20.07.2017 | Paul Scherrer Institut (PSI)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie