Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fusionsbedingungen - Teilchensimulationsstudien von Divertorplasmen

04.03.2002


Unter "Kernfusion" versteht man die Verschmelzung leichter Atomkerne zu schwereren, wobei nach den Gesetzen der Physik wesentliche Energiemengen freigesetzt werden. Seit etwa 50 Jahren bemüht sich eine große Zahl von Wissenschaftlern intensiv um die gesteuerte Erschließung der Fusionsenergie unter Reaktorbedingungen als eine sichere, praktisch unerschöpfliche und saubere Energiequelle. Siegbert Kuhn und seine Mitarbeiter vom Institut für Theoretische Physik der Universität Innsbruck tragen, unterstützt vom FWF und in Zusammenarbeit mit ausländischen Forschergruppen, mit Teilchensimulationsstudien von Divertorplasmen erfolgreich zu diesen Bemühungen bei und reihen damit die österreichische Kernfusionsforschung in die internationalen Aktivitäten auf diesem Gebiet ein.

Um ein für die praktische Energiegewinnung ausreichendes Maß an Kernfusionsreaktionen zu erhalten, ist es erforderlich, die beteiligten Teilchen hinreichend häufig und mit hinreichend hohen Energien zusammenstoßen zu lassen. Dies kann prinzipiell am leichtesten in einem äußerst heißen Wasserstoffgas (ca. 100 Mio. Grad) entsprechender Dichte erreicht werden. Bei diesen Temperaturen ist das Gas voll "ionisiert", d.h., die unter Normalbedingungen elektrisch neutralen Gasmoleküle sind in positiv geladene Kerne ("Ionen") und negativ geladene "Elektronen" aufgespaltet. "Ein solches Gas wird als ,Plasma’ und der Plasmazustand als ,vierter Aggregatzustand der Materie’ bezeichnet. Man bedenke: 99,99 % der Materie des Universums befindet sich im Plasmazustand!", erläutert Kuhn. Heißes Plasma wird in einem ringförmigen Gefäß (Torus) durch ein starkes Magnetfeld geeigneter Struktur eingeschlossen, wobei die derzeit vielversprechendste Konfiguration als "Tokamak" bezeichnet wird. Das nächste große Ziel der weltweiten Fusionsforschung ist der Bau des "International Thermonuclear Experimental Reactor (ITER)", der erstmals mit einem weitgehend durch die Fusionsreaktionen selbst geheizten Plasma arbeiten und hinsichtlich der Plasmaphysik einem späteren kommerziellen Fusionsreaktor nahe kommen wird.

Man unterscheidet in einem Tokamak zwischen dem heißen "Kernplasma", in dem die Energieliefernden Kernfusionsreaktionen ablaufen sollen, und dem kühleren "Randschichtplasma", durch das die aus dem Kernplasma hinaus diffundierenden energiegeladenen Plasmateilchen zu den Prallplatten des "Divertors" hingeleitet werden. "Da jedoch der Energiebelastung der Divertorplatten strikte technische Grenzen gesetzt sind, gehören die mit dem Kontakt zwischen Plasma und Divertorwand zusammenhängenden Fragen zu den wichtigsten wissenschaftlichen und technischen Herausforderungen der heutigen Fusionsforschung", erklärt Kuhn. Mit seinem Projekt hat er wichtige Ergebnisse zum Verständnis des divertornahen Plasmas erzielt: So wurden u.a. die bestehenden physikalischen Modelle und Simulationsprogramme stark verbessert sowie der starke Einfluss von sekundären und schnellen Elektronen auf die Divertorrandschicht klar nachgewiesen und quantifiziert. Kuhn: "Wir konnten auch wesentlich zum Verständnis der Entstehung und der Auswirkungen schneller Teilchen, die bei der Heizung des Tokamakplasmas mittels eingestrahlter Wellen auftreten und die Divertorplatten stark beschädigen können, beitragen. Unsere Ergebnisse können in einem nächsten Schritt direkt für die Modellierung und Optimierung existierender und geplanter Tokamaks eingesetzt werden."

Presseaussendung | FWF

Weitere Berichte zu: Divertorplasma Teilchensimulationsstudie Tokamak

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Max-Planck-Princeton-Partnerschaft in der Fusionsforschung bestätigt
23.11.2017 | Max-Planck-Institut für Plasmaphysik

nachricht Magnetfeld-Sensor Argus „sieht“ Kräfte im Bauteil
23.11.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungsnachrichten

Seminar „Leichtbau im Automobil- und Maschinenbau“ im Haus der Technik Berlin am 16. - 17. Januar 2018

23.11.2017 | Seminare Workshops

Biohausbau-Unternehmen Baufritz erhält von „ Capital“ die Auszeichnung „Beste Ausbilder Deutschlands“

23.11.2017 | Unternehmensmeldung