Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fusionsbedingungen - Teilchensimulationsstudien von Divertorplasmen

04.03.2002


Unter "Kernfusion" versteht man die Verschmelzung leichter Atomkerne zu schwereren, wobei nach den Gesetzen der Physik wesentliche Energiemengen freigesetzt werden. Seit etwa 50 Jahren bemüht sich eine große Zahl von Wissenschaftlern intensiv um die gesteuerte Erschließung der Fusionsenergie unter Reaktorbedingungen als eine sichere, praktisch unerschöpfliche und saubere Energiequelle. Siegbert Kuhn und seine Mitarbeiter vom Institut für Theoretische Physik der Universität Innsbruck tragen, unterstützt vom FWF und in Zusammenarbeit mit ausländischen Forschergruppen, mit Teilchensimulationsstudien von Divertorplasmen erfolgreich zu diesen Bemühungen bei und reihen damit die österreichische Kernfusionsforschung in die internationalen Aktivitäten auf diesem Gebiet ein.

Um ein für die praktische Energiegewinnung ausreichendes Maß an Kernfusionsreaktionen zu erhalten, ist es erforderlich, die beteiligten Teilchen hinreichend häufig und mit hinreichend hohen Energien zusammenstoßen zu lassen. Dies kann prinzipiell am leichtesten in einem äußerst heißen Wasserstoffgas (ca. 100 Mio. Grad) entsprechender Dichte erreicht werden. Bei diesen Temperaturen ist das Gas voll "ionisiert", d.h., die unter Normalbedingungen elektrisch neutralen Gasmoleküle sind in positiv geladene Kerne ("Ionen") und negativ geladene "Elektronen" aufgespaltet. "Ein solches Gas wird als ,Plasma’ und der Plasmazustand als ,vierter Aggregatzustand der Materie’ bezeichnet. Man bedenke: 99,99 % der Materie des Universums befindet sich im Plasmazustand!", erläutert Kuhn. Heißes Plasma wird in einem ringförmigen Gefäß (Torus) durch ein starkes Magnetfeld geeigneter Struktur eingeschlossen, wobei die derzeit vielversprechendste Konfiguration als "Tokamak" bezeichnet wird. Das nächste große Ziel der weltweiten Fusionsforschung ist der Bau des "International Thermonuclear Experimental Reactor (ITER)", der erstmals mit einem weitgehend durch die Fusionsreaktionen selbst geheizten Plasma arbeiten und hinsichtlich der Plasmaphysik einem späteren kommerziellen Fusionsreaktor nahe kommen wird.

Man unterscheidet in einem Tokamak zwischen dem heißen "Kernplasma", in dem die Energieliefernden Kernfusionsreaktionen ablaufen sollen, und dem kühleren "Randschichtplasma", durch das die aus dem Kernplasma hinaus diffundierenden energiegeladenen Plasmateilchen zu den Prallplatten des "Divertors" hingeleitet werden. "Da jedoch der Energiebelastung der Divertorplatten strikte technische Grenzen gesetzt sind, gehören die mit dem Kontakt zwischen Plasma und Divertorwand zusammenhängenden Fragen zu den wichtigsten wissenschaftlichen und technischen Herausforderungen der heutigen Fusionsforschung", erklärt Kuhn. Mit seinem Projekt hat er wichtige Ergebnisse zum Verständnis des divertornahen Plasmas erzielt: So wurden u.a. die bestehenden physikalischen Modelle und Simulationsprogramme stark verbessert sowie der starke Einfluss von sekundären und schnellen Elektronen auf die Divertorrandschicht klar nachgewiesen und quantifiziert. Kuhn: "Wir konnten auch wesentlich zum Verständnis der Entstehung und der Auswirkungen schneller Teilchen, die bei der Heizung des Tokamakplasmas mittels eingestrahlter Wellen auftreten und die Divertorplatten stark beschädigen können, beitragen. Unsere Ergebnisse können in einem nächsten Schritt direkt für die Modellierung und Optimierung existierender und geplanter Tokamaks eingesetzt werden."

Presseaussendung | FWF

Weitere Berichte zu: Divertorplasma Teilchensimulationsstudie Tokamak

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie