Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht gibt Asteroiden Spin

08.03.2007
Wissenschaftler beobachten erstmals den YORP-Effekt

Ein internationales Wissenschaftlerteam hat erstmals einen Asteroiden beobachtet, der seine Rotationsgeschwindigkeit ändert. Die Astronomen aus den USA und Europa - darunter auch Hermann Boehnhardt vom Max-Planck-Institut für Sonnensystemforschung - benutzten leistungsfähige optische und Radar-Teleskope, um den erdnahen Asteroiden 2000 PH5 zu vermessen. Sie fanden dabei heraus, dass der Asteroid jedes Jahr um eine Millisekunde schneller rotiert.


Das Forschungsobjekt der Astronomen - der Asteroid 2000 PH5, aufgenommen mit dem 3,5-Meter Teleskop im spanischen Calar Alto. Bild: Stephen C. Lowry

Ein solches Phänomen - der Yarkovsky-O’Keefe-Radzievskii-Paddack, kurz YORP-Effekt - war schon seit längerem theoretisch vorhergesagt, bisher aber noch nie beobachtet worden. Der YORP-Effekt tritt auf, weil die Sonne die Oberfläche des Asteroiden aufheizt. Wenn die Wärme als Strahlung wieder abgegeben wird, entsteht ein kleines Drehmoment. Dadurch kann sich die räumliche Lage der Rotationsachse verändern, aber auch die Rotationsgeschwindigkeit verlangsamen oder beschleunigen - letzteres ist beim Asteroiden 2000 PH5 der Fall. Irgendwann könnte er sogar zum am schnellsten rotierenden Asteroiden unseres Sonnensystems werden. (Science, 8. März 2007)

Europäischen und amerikanischen Wissenschaftlern ist es gelungen, den YORP-Effekt erstmals direkt zu beobachten. Dieser Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) - Effekt bestimmt die Art und Weise wie kleine Körper im Sonnensystem, etwa Meteoriten oder Asteroiden, rotieren. Der Effekt beruht auf dem Sonnenlicht, das die Oberfläche von Asteroiden und Meteoriten trifft und deren Oberfläche erwärmt. Wenn diese die Wärme wieder abstrahlen führt das zu einem leichten Rückstoßeffekt, der Körper erhält ein Drehmoment und ändert seine Rotationsbewegung. Im Prinzip funktioniert so etwas auch auf der Erde: Wenn man lange genug Licht auf ein Windrad strahlen ließe, würde dieses irgendwann anfangen sich zu drehen.

... mehr zu:
»Asteroid »PH5 »YORP-Effekt

Obwohl der YORP-Effekt eine sehr schwache und kaum zu messende Kraft ist, könnte er die Ursache sein, dass manche Asteroiden so schnell rotieren, dass sie auseinander brechen. Andere Asteroiden können durch den Effekt sogar abgebremst werden, so dass es mehrere Tage dauert bis sie sich ein einziges Mal um ihre Achse gedreht haben. Der YORP-Effekt spielt auch eine wichtige Rolle, bei der Beschreibung der Umlaufbahn von Asteroiden. Trotz dieser wichtigen Bedeutung bis jetzt noch nie aktiv beobachtet werden, wie der YORP-Effekt tatsächlich auf einen bestimmten Asteroiden im Sonnensystem wirkt.

Dies gelang nun dem Wissenschaftlerteam, indem es mehrere leistungsfähige optische und Radar-Teleskope kombinierte. Denn kurz nach der Entdeckung des Asteroiden 2000 PH5 im Jahr 2000 wurde den Forschern klar, dass er ein idealer Kandidat für einen Asterioden mit YORP-Effekt wäre. Mit seinem Durchmesser von nur 114 Metern war er ziemlich schmal und deshalb anfällig für den Effekt. Außerdem rotierte er ziemlich schnell - eine Umdrehung des Asteroiden dauert nur 12 Minuten - der YORP-Effekt musste also bereits seit einer ganzen Weile gewirkt haben. Das Team begann daraufhin mit einer Langzeitbeobachtungen des Asteroiden, um eine Änderung der Rotationsgeschwindgkeit feststellen zu können.

Über einen Zeitraum von vier Jahren, nahmen die Forscher Bilder des Asteroiden auf. Sie benutzten dafür ein breites Spektrum an optischen Teleskopen, darunter das 8.2-Meter Very Large Telescope Array und das 3,5-Meter New Technology Telescope der Europäischen Südsternwarte in Chile, das 3,5-Meter Teleskop im spanischen Calar Alto und einige weitere in Tschechien, den Kanaren, Hawaii, Spanien und Chile. Besonders interessierten sie die leichten Helligkeitsunterschiede, die durch die Rotation des Asteroiden entstehen.

Gleichzeitig kümmerte sich die Radar-Gruppe am Arecibo Observatorium in Puerto Rico und am kalifornischen Goldstone Observatorium um den Asteroiden. Sie schickte Radarpulse zu 2000 PH5 und analysierten die Echos. Mit dieser Technik konnten die Astronomen ein dreidimensionales Bild des Asteroiden konstruieren und schließlich einen YORP-Effekt-Wert berechnen, den sie mit den Daten aus den Messungen der optischen Teleskope verglichen.

Die sorgfältige Analyse der Daten brachte die Gewissheit: Die Rotationsgeschwindigkeit des Asteroiden nahm zu, und zwar in einem Ausmaß, der durch den YORP-Effekt erklärt werden kann. Schon nach einem Jahr drehte sich der Asteroid eine Millisekunde schneller.

Um vorherzusagen, wie sich der Asteroid weiter verhalten wird, führten die Wissenschaftler Computersimulationen durch. Wenn 2000 PH5 seine Umlaufbahn um die Sonne beibehält, könnte er eines Tages seine Rotationsgeschwindigkeit auf 20 Sekunden verringern, und sich somit schneller drehen als jeder andere bekannte Himmelskörper. Bis es so weit ist, muss allerdings noch etwas Zeit vergehen - und zwar 35 Millionen Jahre.

Originalveröffentlichung:

Stephen C. Lowry, Alan Fitzsimmons, Petr Pravec, David Vokrouhlicky, Hermann Boehnhardt, Patrick A. Taylor, Jean-Luc Margot, Adrian Galad, Mike Irwin, Jonathan Irwin, Peter Kusnirak
Direct Detection of the Asteroidal YORP Effect
Science, 8. März 2007

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Asteroid PH5 YORP-Effekt

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten