Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Gerüst des Universums

08.01.2007
Internationales Forscherteam erstellt die bisher genaueste Karte, wie die dunkle Materie in einem Ausschnitt des Universums verteilt ist

Dunkle Materie gibt dem Universum seine Struktur. Ein internationales Wissenschaftlerteam hat nun eine dreidimensionale Karte dieses unsichtbaren Gerüsts erstellt, um das sich die gewöhnliche sichtbare Materie anordnet. Die Karte zeigt in einem Ausschnitt des Universums sowohl die Verteilung dunkler als auch gewöhnlicher, baryonischer Materie. Dieser Ausschnitt umfasst 500 000 Galaxien und ist der bislang größte, den Astrophysiker auf diese Weise kartografiert haben. An der Karte der normalen Materie hat auch das Max-Planck-Institut für extraterrestrische Physik in Garching mitgearbeitet. (Nature, 7. Januar 2007)


Verteilung der dunklen Materie in Blickrichtung des Hubble-Teleskops (COSMOS-Feld). Um die Daten zu gewinnen, teilten die Forscher das COSMOS-Feld in verschiedene Altersschichten ein (vergleichbar den Schnitten durch Gesteinsschichten in der Geologie). Das Alter der Schichten lässt sich aus der Rotverschiebung der beobachteten Galaxien ableiten. Die drei oben gezeigten Schichten stellen also das Universum zu verschiedenen Zeiten in der Vergangenheit dar. Aus der Wechselwirkung der dunklen Materie mit Licht konnte das Wissenschaftlerteam die Verteilung der dunklen Materie berechnen. Bild: NASA, ESA und R. Massey (California Institute of Technology)

Über 80 Prozent der gesamten Masse des Universums bestehen aus dunkler Materie. Sie sendet keine elektromagnetische Strahlung wie etwa sichtbares Licht aus. Nur durch Gravitation kann sie mit normaler baryonischer Materie oder mit Licht wechselwirken. Und genau diese Eigenschaft nutzte das Wissenschaftlerteam aus, um die dreidimensionale Verteilungskarte der dunklen Materie zu zeichnen. Diese Karte bestätigt die Standardtheorie zur Rolle der dunklen Materie.

Astrophysiker betrachten sie nämlich als Gerüst des Universums. Ursprünglich war sie gleichmäßig verteilt, später verdichtete sie sich in manchen Bereichen. Diese Stellen mit besonders viel dunkler Materie ziehen durch ihre stärkere Gravitation die sichtbare Materie an, so dass sich diese zusammenballt. So entstehen Sterne, Galaxien und ganze Galaxienhaufen.

... mehr zu:
»Galaxie »Universum

Die jetzt erstellte Karte zeigt ein über das Universum verteiltes Netz dunkler Materie. An manchen Orten ist die dunkle Materie jedoch sehr dicht - und genau an diesen Stellen befinden sich die Galaxien und das heiße Gas der normalen Materie. Diese Verteilung der Materie im Universum zeigt, dass die baryonische Materie der dunklen Materie folgt.

Die Daten, die die Forscher für die Landkarte verwendeten, stammen vom Weltraumteleskop Hubble. Im Rahmen des Cosmic Evolution Survey (COSMOS) hat Hubble einen verhältnismäßig großen Ausschnitt des Weltalls hochaufgelöst abgebildet, nämlich 1.6 Grad im Quadrat. Dieser Ausschnitt, das COSMOS-Feld, hat eine Größe von achtmal der Fläche des Vollmonds und ist damit der bisher größte auf diese Weise vermessene Ausschnitt des Alls. Dabei ist eine umfangreiche Sammlung sehr detaillierter Bilder von einer halben Million Galaxien entstanden. Und weil die Gravitation der dunklen Materie das Licht dieser Galaxien ablenkt, konnten die Forscher im Umkehrschluss aus der Gestalt der Galaxien auf die Verteilung der dunklen Materie schließen.

Die Methode, die sie dabei verwendeten, beruht auf dem schwachen Gravitationslinseneffekt. Der Effekt lässt sich durch eine einfache Analogie erklären: Wenn Licht durch eine Milchglasscheibe mit aufgerauter Oberfläche, wie zum Beispiel bei Badezimmerfenstern, fällt, wirft es ein charakteristisches Muster an die Wand. Dieses Muster gibt Aufschluss darüber, wie die Oberfläche des Glases strukturiert ist. Auf ganz ähnliche Weise haben die Astrophysiker aus der Gestalt der Galaxien die Verteilung der dunklen Materie bestimmt.

Doch nicht nur dunkle Materie, sondern auch baryonische Materie, wie zum Beispiel ein Stern oder eine Galaxie, lenkt das Licht ab. Im Gegensatz zur dunklen Materie sind die Sterne der Galaxien sichtbar, aus Farbe und Entfernung konnten die Wissenschaftler deshalb auf deren Masse schließen. Unter der Leitung von Günther Hasinger und seiner Gruppe am Max-Planck-Institut für extraterrestrische Physik wurde das COSMOS-Feld auch mit dem XMM-Newton Teleskop der ESA durchmustert. Dieses Teleskop misst die Röntgenstrahlung von heißem Gas im Universum, also die baryonische Materie, die sich an den Orten zusammenballt, wo besonders viel dunkle Materie vorhanden ist. Das von Alexis Finoguenov am Max-Planck-Institut für extraterrestrische Physik erstellte Röntgenbild hatte für das Kartografierprojekt einen besonderen Wert: Es bestätigte die Verteilung der baryonischen Materie vollkommen unabhängig von den Messungen des Gravitationslinseneffektes und half damit, die verwendete Methode zu eichen.

Originalveröffentlichung:

Richard Massey, Jason Rhodes, Richard Ellis, Nick Scoville, Alexie Leauthaud, Alexis Finoguenov, Peter Capak, David Bacon, Hervé Aussel, Jean-Paul Kneib, Anton Koekemoer, Henry McCracken, Bahram Mobasher, Sandrine Pires, Alexander Refregier, Shunji Sasaki, Jean-Luc Starck, Yoshi Taniguchi, Andy Taylor and James Taylor. Dark matter maps reveal cosmic scaffolding

Nature, 7. Januar 2007

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Galaxie Universum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften