Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Universität Mainz nimmt weltweit einmalige Anlage zur Beschleunigung von Elektronen in Betrieb

21.12.2006
Ausbau des Mainzer Mikrotrons mit vierter Beschleunigerstufe ist fertiggestellt. Wissenschaftler erwarten neue Erkenntnisse über den Aufbau der Materie.

Das Institut für Kernphysik der Johannes Gutenberg-Universität Mainz hat am Dienstag eine völlig neue und weltweit in dieser Form einmalige Anlage zur Beschleunigung von Elektronen in Betrieb gesetzt. "Wir konnten gestern Abend unseren ersten Beschleunigungsversuch in der neuen Anlage erfolgreich durchführen", sagte Dr. Andreas Jankowiak, Betriebsleiter des Elektronenbeschleunigers "Mainzer Mikrotron" (MAMI).

"Mit diesem weltweit einmaligen Beschleuniger steht uns künftig ein hochenergetischer Strahl für völlig neue Experimente in der Kern- und Teilchenphysik zur Verfügung", führt Univ.-Prof. Dr. Hans-Jürgen Arends, Geschäftsführender Direktor des Instituts für Kernphysik, aus. In sechsjähriger Bauzeit wurde in Mainz der bestehende Elektronenbeschleuniger für rund 12,5 Millionen Euro mit einer vierten Stufe versehen und damit die Energie des Teilchenstrahls von 855 auf 1.500 Megaelektronenvolt (MeV) nahezu verdoppelt. Die Konstruktion ist so angelegt, dass die bislang außerordentlich hochwertige Strahlqualität erhalten bleibt. Damit können die Kernphysiker, die für ihre Forschungen aus aller Welt ans Mainzer Mikrotron kommen, künftig noch tiefer ins Innere der Materie blicken.

An der Mainzer Universität wird bereits seit Ende der 70er-Jahre eine Beschleunigeranlage zur Erzeugung eines kontinuierlichen Elektronenstrahls, realisiert als Kaskade von sogenannten Rennbahn-Mikrotronen betrieben. Anfang der 90er-Jahre kam als dritte Stufe das weltweit größte Rennbahn-Mikrotron hinzu. Dessen hervorragende Strahlqualität erlaubte die Durchführung von Experimenten, die die Mainzer Kern- und Teilchenforschung an die Weltspitze brachten. Die Experimente lieferten vor allem Grundlagenwissen über den Aufbau unserer Materie, besonders der Protonen und Neutronen. Zu den Höhepunkten der MAMI-Forschungen gehören neue Aussagen über die Ladungsverteilung bei Neutronen und Untersuchungen über Pionen, leichte Teilchen, die aus zwei Quarks aufgebaut sind. Mit der vierten Beschleunigerstufe, MAMI C genannt, können künftig noch ganz andere Teilchen erforscht werden, vor allem die schweren Mesonen. Davon erwarten sich die Wissenschaftler nicht nur neue Erkenntnisse über den Aufbau des Atomkerns, sondern auch über Phänomene des Universums wie beispielsweise die Zusammensetzung von Neutronensternen.

... mehr zu:
»Elektron »Kernphysik »MAMI

Um eine Energie von 1.500 Megaelektronenvolt zu erreichen, wird der Elektronenstrahl zunächst durch die "alte" Anlage, deren drei Stufen jeweils aus zwei Dipolmagneten und einem Linearbeschleuniger bestehen, auf 855 MeV gebracht. Indem der Strahl durch wiederholte Ablenkung mit Hilfe der Magneten immer wieder durch die gleiche Linearbeschleunigerstruktur geführt wird, gewinnen die Elektronen beständig an Energie. Mit den erreichten 855 MeV tritt der Strahl dann in die neue Anlage, ein harmonisches doppelseitiges Mikrotron (HDSM), ein. Dieses einmalige Konzept basiert auf Entwicklungsarbeiten der Beschleunigergruppe des Instituts für Kernphysik unter der damaligen Leitung von Dr. Karl-Heinz Kaiser: Vier Magnete, jeweils 250 Tonnen schwer, lenken den Strahl ab und zwei Linearbeschleuniger mit verschiedenen Frequenzen erzeugen die elektrischen Felder, durch die der Strahl seine Energie gewinnt. "Wir arbeiten hier mit der Standardfrequenz von 2,45 Gigaherz, das entspricht der Frequenz einer haushaltsüblichen Mikrowelle. Zusätzlich haben wir den weltweit ersten 4,90-Gigaherz-Beschleuniger hier entwickelt und eingebaut", erläutert Jankowiak. Auf seinem Weg durch die kleinen Kupfer- und Aluminiumröhrchen erreicht der Strahl schon nach wenigen Metern nahezu Lichtgeschwindigkeit und gewinnt anschließend durch die weitere Energiezufuhr an Masse. Ist das Ziel erreicht, haben die Elektronen ungefähr sieben Kilometer zurückgelegt.

"Wir erwarten wiederum eine phantastische Strahlqualität: Alle Elektronen haben am Ziel nahezu die gleiche Energie und sind in einem feinen Strahl von nur einigen zehntel Millimetern Durchmesser gebündelt", erklärt Arends. "Das ist eine wichtige Voraussetzung für Präzisionsexperimente." Noch ist es allerdings nicht ganz so weit. Nach der erfolgreichen Inbetriebnahme werden die jetzt folgenden Schritte den Beweis, dass MAMI C die gleiche Qualität liefert wie die Vorstufe, erbringen müssen. Fest steht aber jetzt schon, dass MAMI C in dem Energiebereich von 1.500 MeV die Referenzanlage weltweit werden wird und in den kommenden zehn Jahren in- und ausländischen Wissenschaftlern für neue, spannende Experimente in der Kern- und Teilchenphysik für 6.500 Stunden im Jahr zur Verfügung steht.

Kontakt und Informationen:
Dr. Andreas Jankowiak
Betriebsleiter Mainzer Mikrotron
Institut für Kernphysik
Johannes Gutenberg-Universität Mainz
Tel. +49 6131 39-26004
Fax +49 6131 39-22964
E-Mail: janko@kph.uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.kph.uni-mainz.de/

Weitere Berichte zu: Elektron Kernphysik MAMI

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie