Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Universität Mainz nimmt weltweit einmalige Anlage zur Beschleunigung von Elektronen in Betrieb

21.12.2006
Ausbau des Mainzer Mikrotrons mit vierter Beschleunigerstufe ist fertiggestellt. Wissenschaftler erwarten neue Erkenntnisse über den Aufbau der Materie.

Das Institut für Kernphysik der Johannes Gutenberg-Universität Mainz hat am Dienstag eine völlig neue und weltweit in dieser Form einmalige Anlage zur Beschleunigung von Elektronen in Betrieb gesetzt. "Wir konnten gestern Abend unseren ersten Beschleunigungsversuch in der neuen Anlage erfolgreich durchführen", sagte Dr. Andreas Jankowiak, Betriebsleiter des Elektronenbeschleunigers "Mainzer Mikrotron" (MAMI).

"Mit diesem weltweit einmaligen Beschleuniger steht uns künftig ein hochenergetischer Strahl für völlig neue Experimente in der Kern- und Teilchenphysik zur Verfügung", führt Univ.-Prof. Dr. Hans-Jürgen Arends, Geschäftsführender Direktor des Instituts für Kernphysik, aus. In sechsjähriger Bauzeit wurde in Mainz der bestehende Elektronenbeschleuniger für rund 12,5 Millionen Euro mit einer vierten Stufe versehen und damit die Energie des Teilchenstrahls von 855 auf 1.500 Megaelektronenvolt (MeV) nahezu verdoppelt. Die Konstruktion ist so angelegt, dass die bislang außerordentlich hochwertige Strahlqualität erhalten bleibt. Damit können die Kernphysiker, die für ihre Forschungen aus aller Welt ans Mainzer Mikrotron kommen, künftig noch tiefer ins Innere der Materie blicken.

An der Mainzer Universität wird bereits seit Ende der 70er-Jahre eine Beschleunigeranlage zur Erzeugung eines kontinuierlichen Elektronenstrahls, realisiert als Kaskade von sogenannten Rennbahn-Mikrotronen betrieben. Anfang der 90er-Jahre kam als dritte Stufe das weltweit größte Rennbahn-Mikrotron hinzu. Dessen hervorragende Strahlqualität erlaubte die Durchführung von Experimenten, die die Mainzer Kern- und Teilchenforschung an die Weltspitze brachten. Die Experimente lieferten vor allem Grundlagenwissen über den Aufbau unserer Materie, besonders der Protonen und Neutronen. Zu den Höhepunkten der MAMI-Forschungen gehören neue Aussagen über die Ladungsverteilung bei Neutronen und Untersuchungen über Pionen, leichte Teilchen, die aus zwei Quarks aufgebaut sind. Mit der vierten Beschleunigerstufe, MAMI C genannt, können künftig noch ganz andere Teilchen erforscht werden, vor allem die schweren Mesonen. Davon erwarten sich die Wissenschaftler nicht nur neue Erkenntnisse über den Aufbau des Atomkerns, sondern auch über Phänomene des Universums wie beispielsweise die Zusammensetzung von Neutronensternen.

... mehr zu:
»Elektron »Kernphysik »MAMI

Um eine Energie von 1.500 Megaelektronenvolt zu erreichen, wird der Elektronenstrahl zunächst durch die "alte" Anlage, deren drei Stufen jeweils aus zwei Dipolmagneten und einem Linearbeschleuniger bestehen, auf 855 MeV gebracht. Indem der Strahl durch wiederholte Ablenkung mit Hilfe der Magneten immer wieder durch die gleiche Linearbeschleunigerstruktur geführt wird, gewinnen die Elektronen beständig an Energie. Mit den erreichten 855 MeV tritt der Strahl dann in die neue Anlage, ein harmonisches doppelseitiges Mikrotron (HDSM), ein. Dieses einmalige Konzept basiert auf Entwicklungsarbeiten der Beschleunigergruppe des Instituts für Kernphysik unter der damaligen Leitung von Dr. Karl-Heinz Kaiser: Vier Magnete, jeweils 250 Tonnen schwer, lenken den Strahl ab und zwei Linearbeschleuniger mit verschiedenen Frequenzen erzeugen die elektrischen Felder, durch die der Strahl seine Energie gewinnt. "Wir arbeiten hier mit der Standardfrequenz von 2,45 Gigaherz, das entspricht der Frequenz einer haushaltsüblichen Mikrowelle. Zusätzlich haben wir den weltweit ersten 4,90-Gigaherz-Beschleuniger hier entwickelt und eingebaut", erläutert Jankowiak. Auf seinem Weg durch die kleinen Kupfer- und Aluminiumröhrchen erreicht der Strahl schon nach wenigen Metern nahezu Lichtgeschwindigkeit und gewinnt anschließend durch die weitere Energiezufuhr an Masse. Ist das Ziel erreicht, haben die Elektronen ungefähr sieben Kilometer zurückgelegt.

"Wir erwarten wiederum eine phantastische Strahlqualität: Alle Elektronen haben am Ziel nahezu die gleiche Energie und sind in einem feinen Strahl von nur einigen zehntel Millimetern Durchmesser gebündelt", erklärt Arends. "Das ist eine wichtige Voraussetzung für Präzisionsexperimente." Noch ist es allerdings nicht ganz so weit. Nach der erfolgreichen Inbetriebnahme werden die jetzt folgenden Schritte den Beweis, dass MAMI C die gleiche Qualität liefert wie die Vorstufe, erbringen müssen. Fest steht aber jetzt schon, dass MAMI C in dem Energiebereich von 1.500 MeV die Referenzanlage weltweit werden wird und in den kommenden zehn Jahren in- und ausländischen Wissenschaftlern für neue, spannende Experimente in der Kern- und Teilchenphysik für 6.500 Stunden im Jahr zur Verfügung steht.

Kontakt und Informationen:
Dr. Andreas Jankowiak
Betriebsleiter Mainzer Mikrotron
Institut für Kernphysik
Johannes Gutenberg-Universität Mainz
Tel. +49 6131 39-26004
Fax +49 6131 39-22964
E-Mail: janko@kph.uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.kph.uni-mainz.de/

Weitere Berichte zu: Elektron Kernphysik MAMI

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie