Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Universität Mainz nimmt weltweit einmalige Anlage zur Beschleunigung von Elektronen in Betrieb

21.12.2006
Ausbau des Mainzer Mikrotrons mit vierter Beschleunigerstufe ist fertiggestellt. Wissenschaftler erwarten neue Erkenntnisse über den Aufbau der Materie.

Das Institut für Kernphysik der Johannes Gutenberg-Universität Mainz hat am Dienstag eine völlig neue und weltweit in dieser Form einmalige Anlage zur Beschleunigung von Elektronen in Betrieb gesetzt. "Wir konnten gestern Abend unseren ersten Beschleunigungsversuch in der neuen Anlage erfolgreich durchführen", sagte Dr. Andreas Jankowiak, Betriebsleiter des Elektronenbeschleunigers "Mainzer Mikrotron" (MAMI).

"Mit diesem weltweit einmaligen Beschleuniger steht uns künftig ein hochenergetischer Strahl für völlig neue Experimente in der Kern- und Teilchenphysik zur Verfügung", führt Univ.-Prof. Dr. Hans-Jürgen Arends, Geschäftsführender Direktor des Instituts für Kernphysik, aus. In sechsjähriger Bauzeit wurde in Mainz der bestehende Elektronenbeschleuniger für rund 12,5 Millionen Euro mit einer vierten Stufe versehen und damit die Energie des Teilchenstrahls von 855 auf 1.500 Megaelektronenvolt (MeV) nahezu verdoppelt. Die Konstruktion ist so angelegt, dass die bislang außerordentlich hochwertige Strahlqualität erhalten bleibt. Damit können die Kernphysiker, die für ihre Forschungen aus aller Welt ans Mainzer Mikrotron kommen, künftig noch tiefer ins Innere der Materie blicken.

An der Mainzer Universität wird bereits seit Ende der 70er-Jahre eine Beschleunigeranlage zur Erzeugung eines kontinuierlichen Elektronenstrahls, realisiert als Kaskade von sogenannten Rennbahn-Mikrotronen betrieben. Anfang der 90er-Jahre kam als dritte Stufe das weltweit größte Rennbahn-Mikrotron hinzu. Dessen hervorragende Strahlqualität erlaubte die Durchführung von Experimenten, die die Mainzer Kern- und Teilchenforschung an die Weltspitze brachten. Die Experimente lieferten vor allem Grundlagenwissen über den Aufbau unserer Materie, besonders der Protonen und Neutronen. Zu den Höhepunkten der MAMI-Forschungen gehören neue Aussagen über die Ladungsverteilung bei Neutronen und Untersuchungen über Pionen, leichte Teilchen, die aus zwei Quarks aufgebaut sind. Mit der vierten Beschleunigerstufe, MAMI C genannt, können künftig noch ganz andere Teilchen erforscht werden, vor allem die schweren Mesonen. Davon erwarten sich die Wissenschaftler nicht nur neue Erkenntnisse über den Aufbau des Atomkerns, sondern auch über Phänomene des Universums wie beispielsweise die Zusammensetzung von Neutronensternen.

... mehr zu:
»Elektron »Kernphysik »MAMI

Um eine Energie von 1.500 Megaelektronenvolt zu erreichen, wird der Elektronenstrahl zunächst durch die "alte" Anlage, deren drei Stufen jeweils aus zwei Dipolmagneten und einem Linearbeschleuniger bestehen, auf 855 MeV gebracht. Indem der Strahl durch wiederholte Ablenkung mit Hilfe der Magneten immer wieder durch die gleiche Linearbeschleunigerstruktur geführt wird, gewinnen die Elektronen beständig an Energie. Mit den erreichten 855 MeV tritt der Strahl dann in die neue Anlage, ein harmonisches doppelseitiges Mikrotron (HDSM), ein. Dieses einmalige Konzept basiert auf Entwicklungsarbeiten der Beschleunigergruppe des Instituts für Kernphysik unter der damaligen Leitung von Dr. Karl-Heinz Kaiser: Vier Magnete, jeweils 250 Tonnen schwer, lenken den Strahl ab und zwei Linearbeschleuniger mit verschiedenen Frequenzen erzeugen die elektrischen Felder, durch die der Strahl seine Energie gewinnt. "Wir arbeiten hier mit der Standardfrequenz von 2,45 Gigaherz, das entspricht der Frequenz einer haushaltsüblichen Mikrowelle. Zusätzlich haben wir den weltweit ersten 4,90-Gigaherz-Beschleuniger hier entwickelt und eingebaut", erläutert Jankowiak. Auf seinem Weg durch die kleinen Kupfer- und Aluminiumröhrchen erreicht der Strahl schon nach wenigen Metern nahezu Lichtgeschwindigkeit und gewinnt anschließend durch die weitere Energiezufuhr an Masse. Ist das Ziel erreicht, haben die Elektronen ungefähr sieben Kilometer zurückgelegt.

"Wir erwarten wiederum eine phantastische Strahlqualität: Alle Elektronen haben am Ziel nahezu die gleiche Energie und sind in einem feinen Strahl von nur einigen zehntel Millimetern Durchmesser gebündelt", erklärt Arends. "Das ist eine wichtige Voraussetzung für Präzisionsexperimente." Noch ist es allerdings nicht ganz so weit. Nach der erfolgreichen Inbetriebnahme werden die jetzt folgenden Schritte den Beweis, dass MAMI C die gleiche Qualität liefert wie die Vorstufe, erbringen müssen. Fest steht aber jetzt schon, dass MAMI C in dem Energiebereich von 1.500 MeV die Referenzanlage weltweit werden wird und in den kommenden zehn Jahren in- und ausländischen Wissenschaftlern für neue, spannende Experimente in der Kern- und Teilchenphysik für 6.500 Stunden im Jahr zur Verfügung steht.

Kontakt und Informationen:
Dr. Andreas Jankowiak
Betriebsleiter Mainzer Mikrotron
Institut für Kernphysik
Johannes Gutenberg-Universität Mainz
Tel. +49 6131 39-26004
Fax +49 6131 39-22964
E-Mail: janko@kph.uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.kph.uni-mainz.de/

Weitere Berichte zu: Elektron Kernphysik MAMI

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Entzündung weckt Schläfer

29.03.2017 | Biowissenschaften Chemie

Mittelstand 4.0-Kompetenz­zentrum Stuttgart gestartet

29.03.2017 | Wirtschaft Finanzen

Energieträger: Biogene Reststoffe effizienter nutzen

29.03.2017 | Ökologie Umwelt- Naturschutz