Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spurensuche im All: IPHT und Uni Jena entwickeln Spezial-Komponenten für die Weltraumforschung

13.12.2006
Wenn Mitte 2013 eine Sojus-Trägerrakete zur ExoMars-Expedition startet, ist Technologie made in Jena mit an Bord. Wissenschaftler des Institutes für Physikalische Hochtechnologie (IPHT) und der Universität Jena arbeiten als Partner in einem internationalen Konsortium an speziellen Geräten, die die Europäische Raumfahrtagentur ESA vom europäischen Raumflughafen Kourou aus auf die Suche nach Leben auf dem Mars schicken wird.

Forscher-Teams am IPHT, am Institut für Physikalische Chemie (IPC) der Uni Jena und am Institut für Planetologie der Uni Münster unter Leitung von Prof. Dr. Jürgen Popp und Prof. Dr. Elmar Jessberger haben in Zusammenarbeit mit den Firmen Kayser-Threde (München) und Von Hoerner & Sulger (Schwetzingen) spezielle Komponenten entwickelt, die schnell, eindeutig und zuverlässig die chemische Zusammensetzung von Mars-Gesteinen untersuchen können und so möglicherweise die entscheidende Hinweise darauf liefern, ob es auf dem Mars je Leben gegeben hat oder womöglich immer noch gibt.

"Wir verfügen über langjährige Erfahrungen bei der Beurteilung mineralogischer und biologischer Proben mittels der so genannten Raman-Spektroskopie", so Popp. "Diese Technologie für den Einsatz auf der Mars-Oberfläche tauglich zu machen, ist für uns eine große Herausforderung". Damit die Einzelteile - ein Messkopf, der zwei Laser-spektroskopische Verfahren vereint und ein Raman-LIBS-Spektrometer - überhaupt ins All reisen können, müssen sie besonders klein und leicht sein und den extremen Bedingungen beim Start und während des Fluges standhalten. Die Abkürzung LIBS steht für "Laser Induced Breakdown Spectroscopy" und beschreibt ein Verfahren, das genau jene Informationen über die einzelnen Elemente in einer Probe liefern kann, welche man mittels Raman nicht erhält.

Die in den Teams entwickelten Komponenten werden, einmal auf dem Mars angekommen, auf einem kleinem Fahrzeug, einem so genannten Rover, über die Planetenoberfläche fahren und das Gestein analysieren. Damit sie während der sechsmonatigen Lebensdauer des Rovers funktionsfähig bleiben, müssen sie Temperaturen zwischen -150 und +70 Grad Celsius aushalten. Das Raman-Spektrometer, von dem verschiedene Prototypen am IPHT entwickelt wurden, muss hinsichtlich räumlicher und spektroskopischer Auflösung die gleichen Anforderungen erfüllen wie ein Laborgerät - und muss dabei etwa 20mal kleiner sein als sein "großer Bruder". "Zusätzlich muss das Spektrometer, welches schließlich fliegen soll, neben Raman-Daten auch die LIBS-Daten aufzeichnen können, was die Anforderungen nicht leichter macht!" betont IPHT-Direktor Popp.

An den wissenschaftlichen Grundlagen für die Analysen arbeiten Popp und seine Mitarbeiter bereits seit Jahren in ihren irdischen Labors. Unterstützung bei ihrer Geräteentwicklungen erhalten sie dabei von Prof. Dr. Falko Langenhorst vom Lehrstuhl für Mineralogie der Universität Jena. Neben seiner wissenschaftlichen Expertise stellt er auch die Mars-Meteoriten zur Verfügung, an denen Popp die Raman-Spektroskopie stetig weiterentwickelt, um die größtmögliche Informationsmenge aus jeder Probe heraus zu holen. "Die nach dem indischen Physiker Chandrasekhara Venkata Raman benannte Spektroskopie-Methode liefert uns Informationen über die chemische Zusammensetzung des Mars-Gesteins", erläutert der Physikochemiker Popp. "So können wir Aussagen über die Art und das Mengenverhältnis der einzelnen chemischen Komponenten machen." Was die Raman-Spektroskopie nicht leistet, ist ein Nachweis von chemischen Elementen. "Deshalb kombinieren wir zusammen mit Prof. Jessberger in dem Messkopf für die ExoMars-Mission die Raman-Spektroskopie mit der LIBS-Methode", fährt Popp fort.

Die Daten zu erheben ist das eine, eine sinnvolle und vergleichbare Auswertung das andere. Auch hier leistet das Team von Chemikern und Physikern um Jürgen Popp und Elmar Jessberger entscheidende Beiträge für das Gelingen der ExoMars-Mission. "Wir stützen uns auf unsere statistische und chemometrische Expertise und die Erfahrungen, die wir bei der Identifikation von Bakterien gemacht haben. Für die Auswertung unserer Ergebnisse benutzen wir da spezielle Computerprogramme, wie sie in ähnlicher Form auch zur Analyse von Sicherheitskameras aufgezeichneter Fotos eingesetzt werden", erklärt Popp. Mit Hilfe dieser Programme kann er nach den Prinzipien der Mustererkennung Raman-Spektren einzelnen Bakterienarten zuweisen. "Allerdings müssen wir dazu den Computer erst einmal mit einer großen Menge Daten füttern, damit er Vergleichsmöglichkeiten hat", erläutert der Wissenschaftler. "Die Bakterien können sich geringfügig verändern, je nachdem, auf welchen Nährböden und bei welcher Temperatur die Keime gewachsen sind." In gleicher Weise sind auch die Daten vom Mars von vielen verschiedenen Faktoren abhängig, die in die Auswertung mit einfließen müssen, um vergleichbare Aussagen zu erhalten.

Doch nicht nur die Weltraumforschung profitiert von den Jenaer Raman-Innovationen. "Die wissenschaftlichen Erkenntnisse und das technische Know How aus dem Mars-Projekt, fließen natürlich auch in unsere anderen Forschungen mit ein, etwa, wenn es um die Aufklärung von Krankheitsursachen oder neue Diagnosemethoden auf spektroskopischer Basis geht", betont Popp.

Weitere Informationen:
Prof. Dr. Jürgen Popp
Wissenschaftlicher Direktor des IPHT
Tel.: 03641/ 206 300
Fax: 03641/ 206 399
E-Mail: juergen.popp@ipht-jena.de
Prof. Dr. Falko Langenhorst
Institut für Geowissenschaften, Lehrstuhl für Mineralogie
Tel.: 03641/ 948 700
Fax: 03641/ 948 602
E-Mail: falko.langenhorst@uni-jena.de
Hintergrundinformationen zur ExoMars-Mission:
ExoMars ist ein geplanter europäischer Mars-Rover, der im Rahmen des Aurora-Programms 2013 gestartet werden soll. Zunächst erwog man, den Rover 2011 ins All zu schicken, die Landung sollte zwei Jahre später (2013) erfolgen. Im November 2006 verschob die ESA den Starttermin auf 2013, um mehr Zeit zur Entwicklung von Schlüsseltechnologien zu haben. Die Reise zum Mars soll nun nur ein Jahr dauern und die Landung schon 2014 erfolgen. Die Kosten der Mission sollen etwa 600 Millionen Euro betragen.
Die Mission der ESA dient unter anderem der Suche nach Leben auf dem Mars. Damit wird sie nicht nur zur Klärung einer der spannendsten Fragen der Wissenschaft beitragen, sondern auch Technologien erproben, die bei weiteren europäischen Planeten-Erkundungen und vor allem für bemannte Missionen eine Schlüsselrolle spielen. Zwei Elementegehören zu ExoMars: Ein Rover und ein kleine stationäre Einheit. Während diese geophysikalische Messungen anstellen wird, die wichtig sind, um die Entstehungsgeschichte des Mars zu verstehen und Möglichkeiten der Besiedelung auszuloten, wird sich der Rover auf die Suche nach den sprichwörtlichen Marsmännchen begeben. Dazu trägt das kleine Fahrzeug eine ganz besondere Last: Das "Pasteur"-Packet besteht aus einer ganzen Sammlung von Instrumenten, die der Rundum- und eine Langstreckenuntersuchung, dem Aufspüren von Wasser und der Analyse von geologischen und möglichen biologischen Proben dient. Dabei wird nicht nur die Mars-Oberfläche untersucht. "Pasteur" wird sich vielmehr bis zu zwei Meter tief in den Planetenboden bohren und damit in Schichten vordringen, in denen sich Spuren von Leben möglicherweise bis heute erhalten haben.

Heute zeigt uns der Mars ein kaltes, trockenes und ödes Gesicht. Seine Oberfläche ist intensiver zerstörerischer und lebensfeindlicher UV-Strahlung ausgesetzt. Die tiefen Temperaturen und der hohe Druck schließen die Existenz von Wasser eigentlich aus, es kommt lediglich in Form von Eis an den Polen vor sowie im Dauerfrost tief liegender Bodenschichten und in Spuren in der Atmosphäre. Große Kanäle, verzweigte Täler und Steinablagerungen legen aber den Schluss nahe, dass es früher flüssiges Wasser in großen Mengen auf dem Mars gegeben haben muss. Wenn die Planetenoberfläche in den ersten 500 Millionen Jahren der Marsgeschichte etwas warmer und feuchter war, dann hat sich dort Leben möglicherweise zur gleichen Zeit entwickelt wie auf der Erde. Es ist möglich, dass sich die frühen Lebensformen in tiefere Mars-Schichten zurückgezogen haben, als es auf dem Roten Planeten immer ungemütlicher wurde. Die Tatsache, dass man auf der Erde in mehreren Kilometern Tiefe eine vielfältige Bakterienwelt entdeckt hat, lässt Wissenschaftler hoffen, dass sie auch bei Bohrungen auf dem Mars auf Leben stoßen.

Susanne Liedtke | idw
Weitere Informationen:
http://www.ipht-jena.de
http://www.igw.uni-jena.de/mineral/

Weitere Berichte zu: ESA ExoMars-Mission IPHT Raman-Spektroskopie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie