Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spurensuche im All: IPHT und Uni Jena entwickeln Spezial-Komponenten für die Weltraumforschung

13.12.2006
Wenn Mitte 2013 eine Sojus-Trägerrakete zur ExoMars-Expedition startet, ist Technologie made in Jena mit an Bord. Wissenschaftler des Institutes für Physikalische Hochtechnologie (IPHT) und der Universität Jena arbeiten als Partner in einem internationalen Konsortium an speziellen Geräten, die die Europäische Raumfahrtagentur ESA vom europäischen Raumflughafen Kourou aus auf die Suche nach Leben auf dem Mars schicken wird.

Forscher-Teams am IPHT, am Institut für Physikalische Chemie (IPC) der Uni Jena und am Institut für Planetologie der Uni Münster unter Leitung von Prof. Dr. Jürgen Popp und Prof. Dr. Elmar Jessberger haben in Zusammenarbeit mit den Firmen Kayser-Threde (München) und Von Hoerner & Sulger (Schwetzingen) spezielle Komponenten entwickelt, die schnell, eindeutig und zuverlässig die chemische Zusammensetzung von Mars-Gesteinen untersuchen können und so möglicherweise die entscheidende Hinweise darauf liefern, ob es auf dem Mars je Leben gegeben hat oder womöglich immer noch gibt.

"Wir verfügen über langjährige Erfahrungen bei der Beurteilung mineralogischer und biologischer Proben mittels der so genannten Raman-Spektroskopie", so Popp. "Diese Technologie für den Einsatz auf der Mars-Oberfläche tauglich zu machen, ist für uns eine große Herausforderung". Damit die Einzelteile - ein Messkopf, der zwei Laser-spektroskopische Verfahren vereint und ein Raman-LIBS-Spektrometer - überhaupt ins All reisen können, müssen sie besonders klein und leicht sein und den extremen Bedingungen beim Start und während des Fluges standhalten. Die Abkürzung LIBS steht für "Laser Induced Breakdown Spectroscopy" und beschreibt ein Verfahren, das genau jene Informationen über die einzelnen Elemente in einer Probe liefern kann, welche man mittels Raman nicht erhält.

Die in den Teams entwickelten Komponenten werden, einmal auf dem Mars angekommen, auf einem kleinem Fahrzeug, einem so genannten Rover, über die Planetenoberfläche fahren und das Gestein analysieren. Damit sie während der sechsmonatigen Lebensdauer des Rovers funktionsfähig bleiben, müssen sie Temperaturen zwischen -150 und +70 Grad Celsius aushalten. Das Raman-Spektrometer, von dem verschiedene Prototypen am IPHT entwickelt wurden, muss hinsichtlich räumlicher und spektroskopischer Auflösung die gleichen Anforderungen erfüllen wie ein Laborgerät - und muss dabei etwa 20mal kleiner sein als sein "großer Bruder". "Zusätzlich muss das Spektrometer, welches schließlich fliegen soll, neben Raman-Daten auch die LIBS-Daten aufzeichnen können, was die Anforderungen nicht leichter macht!" betont IPHT-Direktor Popp.

An den wissenschaftlichen Grundlagen für die Analysen arbeiten Popp und seine Mitarbeiter bereits seit Jahren in ihren irdischen Labors. Unterstützung bei ihrer Geräteentwicklungen erhalten sie dabei von Prof. Dr. Falko Langenhorst vom Lehrstuhl für Mineralogie der Universität Jena. Neben seiner wissenschaftlichen Expertise stellt er auch die Mars-Meteoriten zur Verfügung, an denen Popp die Raman-Spektroskopie stetig weiterentwickelt, um die größtmögliche Informationsmenge aus jeder Probe heraus zu holen. "Die nach dem indischen Physiker Chandrasekhara Venkata Raman benannte Spektroskopie-Methode liefert uns Informationen über die chemische Zusammensetzung des Mars-Gesteins", erläutert der Physikochemiker Popp. "So können wir Aussagen über die Art und das Mengenverhältnis der einzelnen chemischen Komponenten machen." Was die Raman-Spektroskopie nicht leistet, ist ein Nachweis von chemischen Elementen. "Deshalb kombinieren wir zusammen mit Prof. Jessberger in dem Messkopf für die ExoMars-Mission die Raman-Spektroskopie mit der LIBS-Methode", fährt Popp fort.

Die Daten zu erheben ist das eine, eine sinnvolle und vergleichbare Auswertung das andere. Auch hier leistet das Team von Chemikern und Physikern um Jürgen Popp und Elmar Jessberger entscheidende Beiträge für das Gelingen der ExoMars-Mission. "Wir stützen uns auf unsere statistische und chemometrische Expertise und die Erfahrungen, die wir bei der Identifikation von Bakterien gemacht haben. Für die Auswertung unserer Ergebnisse benutzen wir da spezielle Computerprogramme, wie sie in ähnlicher Form auch zur Analyse von Sicherheitskameras aufgezeichneter Fotos eingesetzt werden", erklärt Popp. Mit Hilfe dieser Programme kann er nach den Prinzipien der Mustererkennung Raman-Spektren einzelnen Bakterienarten zuweisen. "Allerdings müssen wir dazu den Computer erst einmal mit einer großen Menge Daten füttern, damit er Vergleichsmöglichkeiten hat", erläutert der Wissenschaftler. "Die Bakterien können sich geringfügig verändern, je nachdem, auf welchen Nährböden und bei welcher Temperatur die Keime gewachsen sind." In gleicher Weise sind auch die Daten vom Mars von vielen verschiedenen Faktoren abhängig, die in die Auswertung mit einfließen müssen, um vergleichbare Aussagen zu erhalten.

Doch nicht nur die Weltraumforschung profitiert von den Jenaer Raman-Innovationen. "Die wissenschaftlichen Erkenntnisse und das technische Know How aus dem Mars-Projekt, fließen natürlich auch in unsere anderen Forschungen mit ein, etwa, wenn es um die Aufklärung von Krankheitsursachen oder neue Diagnosemethoden auf spektroskopischer Basis geht", betont Popp.

Weitere Informationen:
Prof. Dr. Jürgen Popp
Wissenschaftlicher Direktor des IPHT
Tel.: 03641/ 206 300
Fax: 03641/ 206 399
E-Mail: juergen.popp@ipht-jena.de
Prof. Dr. Falko Langenhorst
Institut für Geowissenschaften, Lehrstuhl für Mineralogie
Tel.: 03641/ 948 700
Fax: 03641/ 948 602
E-Mail: falko.langenhorst@uni-jena.de
Hintergrundinformationen zur ExoMars-Mission:
ExoMars ist ein geplanter europäischer Mars-Rover, der im Rahmen des Aurora-Programms 2013 gestartet werden soll. Zunächst erwog man, den Rover 2011 ins All zu schicken, die Landung sollte zwei Jahre später (2013) erfolgen. Im November 2006 verschob die ESA den Starttermin auf 2013, um mehr Zeit zur Entwicklung von Schlüsseltechnologien zu haben. Die Reise zum Mars soll nun nur ein Jahr dauern und die Landung schon 2014 erfolgen. Die Kosten der Mission sollen etwa 600 Millionen Euro betragen.
Die Mission der ESA dient unter anderem der Suche nach Leben auf dem Mars. Damit wird sie nicht nur zur Klärung einer der spannendsten Fragen der Wissenschaft beitragen, sondern auch Technologien erproben, die bei weiteren europäischen Planeten-Erkundungen und vor allem für bemannte Missionen eine Schlüsselrolle spielen. Zwei Elementegehören zu ExoMars: Ein Rover und ein kleine stationäre Einheit. Während diese geophysikalische Messungen anstellen wird, die wichtig sind, um die Entstehungsgeschichte des Mars zu verstehen und Möglichkeiten der Besiedelung auszuloten, wird sich der Rover auf die Suche nach den sprichwörtlichen Marsmännchen begeben. Dazu trägt das kleine Fahrzeug eine ganz besondere Last: Das "Pasteur"-Packet besteht aus einer ganzen Sammlung von Instrumenten, die der Rundum- und eine Langstreckenuntersuchung, dem Aufspüren von Wasser und der Analyse von geologischen und möglichen biologischen Proben dient. Dabei wird nicht nur die Mars-Oberfläche untersucht. "Pasteur" wird sich vielmehr bis zu zwei Meter tief in den Planetenboden bohren und damit in Schichten vordringen, in denen sich Spuren von Leben möglicherweise bis heute erhalten haben.

Heute zeigt uns der Mars ein kaltes, trockenes und ödes Gesicht. Seine Oberfläche ist intensiver zerstörerischer und lebensfeindlicher UV-Strahlung ausgesetzt. Die tiefen Temperaturen und der hohe Druck schließen die Existenz von Wasser eigentlich aus, es kommt lediglich in Form von Eis an den Polen vor sowie im Dauerfrost tief liegender Bodenschichten und in Spuren in der Atmosphäre. Große Kanäle, verzweigte Täler und Steinablagerungen legen aber den Schluss nahe, dass es früher flüssiges Wasser in großen Mengen auf dem Mars gegeben haben muss. Wenn die Planetenoberfläche in den ersten 500 Millionen Jahren der Marsgeschichte etwas warmer und feuchter war, dann hat sich dort Leben möglicherweise zur gleichen Zeit entwickelt wie auf der Erde. Es ist möglich, dass sich die frühen Lebensformen in tiefere Mars-Schichten zurückgezogen haben, als es auf dem Roten Planeten immer ungemütlicher wurde. Die Tatsache, dass man auf der Erde in mehreren Kilometern Tiefe eine vielfältige Bakterienwelt entdeckt hat, lässt Wissenschaftler hoffen, dass sie auch bei Bohrungen auf dem Mars auf Leben stoßen.

Susanne Liedtke | idw
Weitere Informationen:
http://www.ipht-jena.de
http://www.igw.uni-jena.de/mineral/

Weitere Berichte zu: ESA ExoMars-Mission IPHT Raman-Spektroskopie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise