Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kaffeesatzlesen im Quantenrauschen

08.12.2006
Physiker der Universität Mainz gewinnen Informationen aus den zufälligen Mustern in Atomwolken und können damit einen fundamentalen Effekt der Quantenphysik erstmals an Atomen nachweisen.

Störendes Rauschen umgibt uns alltäglich in unserer Umwelt. So tritt es zum Beispiel bei schlechtem Handyempfang oder beim Flimmern des Fernsehers auf. In technischen Anwendungen versucht man dieses Rauschen so weit wie möglich zu vermeiden.

Doch selbst wenn alle Störeinflüsse beseitigt sind, verbleibt nach den Gesetzen der Quantenphysik ein gewisses Quantenrauschen, das prinzipiell nicht umgangen werden kann. Physiker der Johannes Gutenberg-Universität Mainz konnten dieses Quantenrauschen in ultrakalten atomaren Gaswolken nun nutzbar machen und zeigen, dass subtile Verbindungen in diesem Rauschen bestehen können, aus denen sich Informationen über einen früheren Zustand perfekter Ordnung der Atome gewinnen lassen. Die Ergebnisse der Mainzer Forscher werden in der aktuellen Ausgabe des renommierten Wissenschaftsmagazins Nature vorgestellt.

Die Forschungsergebnisse eröffnen den Physikern der Arbeitsgruppe von Prof. Immanuel Bloch einen neuen Weg, komplexe quantenmechanische Systeme aus vielen Teilchen zu untersuchen. Ein tieferes Verständnis dieser Systeme kann unter anderem dazu beitragen, die Rätsel der Hochtemperatur-Supraleitung zu lösen.

... mehr zu:
»Atom »Quantenrauschen »Teilchen

Die Forscher nutzen dabei das in vielen Bereichen eingesetzte Verfahren der Korrelationsanalyse. In den Wirtschaftswissenschaften werden beispielsweise Aktienkurse verschiedener Zeiten miteinander in Beziehung gesetzt, um Trends zu erkennen und Vorhersagen zu treffen. Der Kurs einer einzelnen Aktie hängt dabei von vielen unterschiedlichen Faktoren ab, von denen die meisten für jede Aktie spezifisch sind. Werden jedoch Korrelationen - also ähnliche Entwicklungen - zwischen den Kursen unterschiedlicher Aktien nachgewiesen, so kann dies auf "versteckte" gemeinsame Faktoren, zum Beispiel steigende Rohstoffpreise, hinweisen. Statt Beziehungen zwischen Aktienwerten analysieren die Mainzer Forscher - basierend auf einem Vorschlag von Physikern der Harvard University - das Quantenrauschen in Bildern atomarer Gaswolken und konnten damit Informationen über den ursprünglichen Zustand der Atome gewinnen.

Für ihr Experiment kühlen die Mainzer Wissenschaftler dünne Wolken fermionischer Atome auf extrem niedrige Temperaturen knapp über dem absoluten Nullpunkt, der bei etwa minus 273 Grad Celsius liegt, ab. Anschließend werden die Teilchen in einen künstlichen Kristall aus Licht transferiert, welcher durch die geschickte Überlagerung mehrerer Laserstrahlen erzeugt wird. Für die Atome bildet der Lichtkristall eine regelmäßige Anordnung mikroskopischer Töpfchen, in denen sie gefangen werden. Aufgrund ihrer niedrigen Temperatur streben die Atome in den Bereich kleinster potentieller Energie im Zentrum des Kristalls. Da es sich bei den Teilchen um "individualistische" Fermionen handelt, kann jedes "Potentialtöpfchen" nur ein Atom aufnehmen. Dieses Verhalten ist allein auf das Pauli-Prinzip - eine fundamentale Quanteneigenschaft - zurückzuführen. Als Konsequenz reihen sich die Atome entlang der Kristallachsen wie an Perlenschnüren auf und bilden eine perfekt geordnete mikroskopische Struktur.

Sobald das Laserlicht abrupt abgeschaltet wird, löst sich der Kristall auf und die Atome können sich frei im Raum ausbreiten. Durch die individuelle Bewegung der einzelnen Atome geht ihre ursprüngliche Ordnung verloren. Nach einer kurzen Zeit hat sich die Atomwolke soweit ausgedehnt, dass sie photographiert werden kann. Die Korrelationen innerhalb des Rauschens hängen nun entscheidend von der Natur der Teilchen ab.

In der Quantenphysik unterscheidet man zwischen zwei Klassen von Teilchen: Bosonen und Fermionen. Die Teilchen aus den jeweiligen Klassen weisen ein fundamental unterschiedliches "Sozialverhalten" auf. Während Bosonen geselliger Natur sind und sich bevorzugt am selben Ort aufhalten, sind Fermionen strikte Einzelgänger. Sie folgen dabei dem Pauli-Prinzip, welches eine mehrfache Besetzung desselben Quantenzustandes durch identische Teilchen verbietet. So sind zum Beispiel die Elektronen in der Hülle eines Atoms fermionische Teilchen. Wie die untersten Sprossen einer Leiter werden daher die niedrigsten Umlaufbahnen in der Hülle des Atoms von jeweils nur einem Elektron besetzt. Insbesondere erklärt sich aus diesem Prinzip, warum Materie nicht einfach in sich zusammenstürzt. Neben den fermionischen Grundbausteinen des Atoms (Elektronen und Nukleonen) kann auch das Atom selbst als zusammengesetztes Teilchen wiederum ein Fermion sein.

Im Jahr 1956 führten die Pioniere der Quantenoptik Robert Hanbury Brown und Richard Twiss ein Aufsehen erregendes Experiment durch, in welchem sie Korrelationen zwischen Photonen (Lichtteilchen) mit zwei Detektoren in einem bestimmten Abstand nachwiesen. Dabei beobachteten sie zum ersten Mal das für bosonische Teilchen charakteristische "Bunching", das bevorzugte gemeinsame Auftreten. Die beiden Forscher konnten diese Rauschkorrelationen nutzen, um Informationen über Eigenschaften der Lichtquelle, in diesem Fall zum Beispiel den Durchmesser weit entfernter Sterne, zu erhalten.

Fünfzig Jahre später gelingt bei dem Mainzer Experiment das Pendant mit der erstmaligen Beobachtung von fermionischem Anti-Bunching an nicht wechselwirkenden Atomen. Wird ein fermionisches Atom an einem Ort nachgewiesen, so kann in bestimmten Abständen kein weiteres Atom nachgewiesen werden. Diese Abstände sind durch die ursprüngliche regelmäßige Anordnung der Atome im Lichtkristall bestimmt. Mit der Beobachtung dieses fundamentalen Quanteneffektes demonstrieren die Mainzer Wissenschaftler eine Methode, die zukünftig für den Nachweis komplexerer Ordnungen der Atome eingesetzt werden kann. So können unter anderem Zustände untersucht werden, die als Schlüssel zur Hochtemperatur-Supraleitung diskutiert werden.

Kontakt und Informationen:
Univ.-Prof. Immanuel Bloch
Institut für Physik
Johannes Gutenberg-Universität Mainz
Tel. +49 6131 39-26234
Fax +49 6131 39-25179
E-Mail: bloch@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de

Weitere Berichte zu: Atom Quantenrauschen Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

nachricht Sternenstaub reist häufiger in Meteoriten mit als gedacht
15.08.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie