Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die künstliche Netzhaut

23.11.2006
Optisches Institut der TU Berlin entwickelt intelligente Kameras

Heutige Hightech-Kameras können mit ihrer hohen Auflösung oft Dinge sehen, die das menschliche Auge gar nicht wahrnimmt. Doch etwas Entscheidendes hat das menschliche Augenpaar ihnen immer noch voraus: das dreidimensionale Sehen.

Das soll nun anders werden. Die Arbeitsgruppe "Optische Technologien" von TU-Professorin Dr. Susanna Orlic startete ein ambitioniertes Projekt, das eine neue Generation hoch intelligenter optischer Sensorsysteme entwickeln und die Beschränkungen konventioneller Kameratechnik überwinden will: Es heißt NAMIROS und wird vom Bundesforschungsministerium mit vier Millionen Euro über drei Jahre gefördert.

"Das neue Sensorsystem soll zum Beispiel eine Vordergrund-Hintergrund-Trennung vornehmen und Objekte erkennen können", erklärt Susanna Orlic. "Integriert in eine Kamera wird dieses nicht nur die Objekte vollständig im Raum abbilden und lokalisieren, sondern auch ihre 3D-Form klassifizieren. Das heißt, dass der Sensor selbstständig zum Beispiel ein Haus von einem Auto unterscheiden kann."

... mehr zu:
»Nanokomposit »Sensorsystem

"Nano- und Mikrostrukturierung von Photopolymeren und Nanokompositen als Raumgitter für die optische Sensorik" heißt das von Susanna Orlic koordinierte Projekt mit vollem Namen. Vier Unternehmen, zwei Institute und zwei Universitätsgruppen sind daran beteiligt. Die Entwicklung soll schließlich Anwendung finden in den verschiedensten Bereichen der Industrie wie Verkehrstechnik, Medizin, digitale Bildverarbeitung und vielen anderen. Durch die Kombination chemischer, optischer und Informationstechnologien eröffnet das interdisziplinäre Projekt weiteres Innovationspotenzial.

Vorbild sind biologische Systeme, die intelligent funktionieren. Zum Beispiel kann das menschliche Auge verschiedene Farben auch bei unterschiedlichsten Beleuchtungsverhältnissen identifizieren. Um ein solches optisch-sensorisches Abbildungssystem künstlich zu schaffen, müssen Nano- und Mikro-Raumgitterstrukturen hergestellt werden. Die Schwierigkeit liegt dabei in der Entwicklung geeigneter Materialien, die sich durch Licht fein strukturieren und zu einem hierarchischen Raumgittersystem zusammenfügen lassen.

Die Periodizität der Raumgitter variiert von einigen Nanometern bis zu einigen Mikrometern. Die geforderte hohe optische Transparenz und der kontrollierbare Beugungskontrast der Raumgitterkomponenten werden mit maßgeschneiderten polymerbasierten Nanokompositen erreicht. Die Methode wird optisch als 4D RGB Sensorik beschrieben, da das Raumgittersystem die 3D-Objektinformation um eine zusätzliche, im Spektrum des Lichts enthaltene, Dimension erweitert.

Die Arbeitsgruppe Optische Technologien der TU Berlin übernimmt die holografische Herstellung von Raumgittern. Hierfür werden mehrere Laserstrahlen aus verschiedenen Richtungen im Material überlagert. Durch Interferenz entsteht dabei eine dreidimensionale Modulation der Lichtintensität. Diese überträgt sich in die photosensitiven Materialien, es bildet sich eine entsprechende räumliche Variation der Brechzahl aus. So entstehen photonische Raumgitter, mit einer den Kristallgittern ähnlichen periodischen Struktur. Mit dieser Methode kann eine Vielfalt von Raumgitterstrukturen mit unterschiedlicher Periodizität realisiert werden, indem Wellenlänge und Richtung der Laserstrahlen angepasst werden.

Anschließend werden die so hergestellten Bauelemente in ein Sensorsystem integriert, das eine ortsgetreue Abbildung erreicht. Typische Einsatzgebiete für objektklassifizierende optische Filter wären z.B. intelligente Bewegungsmelder, die zwischen typischen Objekten (Tieren, Menschen, Autos) unterscheiden können; intelligente Ampeln, automatisch fahrende Fahrzeuge oder Sicherheits- und Überwachungssysteme, die an Gebäuden, an Fahrzeugen, an industriellen Robotern durch die berührungslose Erkennung von Signalklassen in Echtzeit regeln und Entscheidungen treffen.

Weitere Informationen erteilt Ihnen gern: Prof. Dr. Susanna Orlic,
Technische Universität Berlin, Institut für Optik und Atomare Physik, Arbeitsgruppe Optische Technologien

Tel.: 030- 314-24090, E-Mail: orlic@physik.tu-berlin.de

Ramona Ehret | idw
Weitere Informationen:
http://www.tu-berlin.de/
http://www.tu-berlin.de/presse/pi/2006/pi285.htm
http://rosa.physik.tu-berlin.de/opttech/

Weitere Berichte zu: Nanokomposit Sensorsystem

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics