Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekülbremse eröffnet neue Einblicke in die Quantenwelt

15.09.2006
Forscher des Berliner Fritz-Haber-Instituts decken bei Stoß-Experimenten mit gezielt abgebremsten Molekülen deren molekulare Quantenstruktur auf

Eine neue Technik, mit der Zusammenstöße zwischen neutralen Molekülen und Atomen bei niedrigen Geschwindigkeiten studiert werden können, haben Wissenschaftler des Fritz-Haber-Instituts der Max-Planck-Gesellschaft entwickelt,. Dieses Experiment enthüllt Details der stoßenden Teilchen und ihrer Wechselwirkungen, die bei "normalen" Geschwindigkeiten verborgen bleiben. Die gewonnenen Daten zeigen eine hohe Übereinstimmung mit dem derzeit exaktesten theoretischen Modell für molekulare Stöße. Die Forschungsergebnisse werden in der internationalen Fachzeitschrift "Science" veröffentlicht (Science, 15. September 2006).


Schematische Darstellung des experimentellen Aufbaus sowie des Energieniveauschemas eines OH-Radikals. Dazu werden OH-Radikale durch einen Stark-Abbremser geleitet. Dieser kann die Molekülgeschwindigkeit präzise zwischen 33 und 700 Meter pro Sekunde einstellen. Verlassen die Radikale den Abbremser, stoßen sie mit Xenon-Atome zusammen. Mit einem Laserstrahl kann man dann die detaillierte Quantenstruktur der OH-Radikale untersuchen. Hierbei zeigt sich, dass die Gesetze der Quantenmechanik nur diskrete rotationelle Energiezustände zulassen. Bild: Fritz-Haber-Institut

Lässt man Teilchen unter kontrollierten Bedingungen zusammenstoßen und misst danach ihre Eigenschaften, erhält man Informationen über ihre Struktur und ihre Wechselwirkungen. Die Geschwindigkeit, mit der die Teilchen aufeinandertreffen, ist hierbei ein entscheidender Parameter. In großen Teilchenbeschleunigern, wie beispielsweise am Europäischen Forschungszentrum CERN, läßt man geladene Teilchen mit sehr hohen Geschwindigkeiten aufeinander prallen und kann diese dadurch in ihre kleinsten Bausteine zerlegen.

Wissenschaftler des Fritz-Haber-Instituts in Berlin haben nun unter Leitung von Prof. Gerard Meijer neue Experimente durchgeführt, bei denen neutrale Moleküle mit sehr niedriger Geschwindigkeit gegen Atome stoßen. Ihre Geschwindigkeit ist so gering, dass die Moleküle weder zerstört werden noch in kleinere Teilchen zerfallen. Solche Stöße machen vielmehr Details der molekularen Quantenstruktur sichtbar, wenn man die Entstehung langlebiger Molekülkomplexe verstehen will.

Denn normalerweise haben neutrale Moleküle hohe Geschwindigkeiten, die sich relativ breit um einen Mittelwert von rund fünfhundert Meter pro Sekunde verteilen. Das ist zu schnell, um bei einem Stoß ihre molekulare Detailstruktur beobachten zu können. Bis vor kurzem war es allerdings auch schwierig, Moleküle entsprechend abbremsen zu können. Das gelang nun mit eine besonderen Molekülbremse, der in den vergangenen Jahren von der Forschungsgruppe "Kalte Moleküle" am FOM-Institut für Plasmaphysik "Rijnhuizen" in Nieuwegein, Niederlande, entwickelt worden war, die ihre Forschung seit Ende 2003 am Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin fortsetzt.

Der Abbremser funktioniert genau gegenteilig zu einem Teilchenbeschleuniger und ermöglicht den Forschern, die Molekülgeschwindigkeiten auf einer Skala zwischen 33 und 700 Meter pro Sekunde genau einzustellen. Zudem haben dann alle Moleküle, die den Abbremser verlassen, in etwa die gleiche Geschwindigkeit bezogen auf den eingestellten Mittelwert.

Um die Wirksamkeit dieser Methode zu demonstrieren, liessen die Forscher OH-Moleküle (ein Radikal, das eine wichtige Rolle in der Chemie der Atmosphäre spielt) auf Xenon-Atome stoßen. In Abhängigkeit von der Stoßenergie können die OH-Moleküle durch den Stoßprozess in Rotation versetzt werden. Die Gesetze der Quantenmechanik schreiben nun vor, dass sich die Drehgeschwindigkeit von Molekülen nur stufenweise erhöhen läßt. Genau dies wurde nun bei den Berliner Experimenten sichtbar. Danach verglichen die Forscher ihre Ergebnisse mit Berechnungen des theoretischen Chemikers Gerrit Groenenboom aus Nijmegen, Niederlande, die . auf Basis der bis dato präzisesten Theorie durchgeführt wurden. Die experimentellen und die rechnerischen Werte zeigten eine hohe Übereinstimmung.

Die neue Technik ermöglicht eine Vielzahl interessanter Versuche. So wollen die Forscher in Zukunft nicht nur Atome und Moleküle, sondern auch Molekül auf Molekül treffen lassen und dabei die Geschwindigkeit beider Stoßpartner präzise variieren. Hierfür sind dann zwei Molekülabbremser erforderlich. Damit kann man die Genauigkeit der Stoßenergie um das Zehnfache erhöhen. Auf diese Weise sollten weitere Details der molekularen Quantenstruktur sichtbar werden.

Doch der Molekülabbremser ermöglicht auch neuartige Experimente auf dem Gebiet der Physikalischen Chemie. Denn steht gerade genug Energie für eine chemische Reaktion zur Verfügung, so dominieren Quanteneffekte das Verhalten der Reaktionspartner. Doch was unter solchen Bedingungen genau passiert, ist noch größtenteils unbekannt. Der Molekülabbremser ist daher ein ideales Instument, um solche Prozesse genauestens zu studieren.

Originalveröffentlichung:

Joop Gilijamse, Steven Hoekstra, Sebastiaan van de Meerakker, Gerrit Groenenboom and Gerard Meijer
Near-threshold inelastic collisions using molecular beams with a tunable velocity

Science, 15 September 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Molekülabbremser Molekülbremse Quantenstruktur

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften