Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekülbremse eröffnet neue Einblicke in die Quantenwelt

15.09.2006
Forscher des Berliner Fritz-Haber-Instituts decken bei Stoß-Experimenten mit gezielt abgebremsten Molekülen deren molekulare Quantenstruktur auf

Eine neue Technik, mit der Zusammenstöße zwischen neutralen Molekülen und Atomen bei niedrigen Geschwindigkeiten studiert werden können, haben Wissenschaftler des Fritz-Haber-Instituts der Max-Planck-Gesellschaft entwickelt,. Dieses Experiment enthüllt Details der stoßenden Teilchen und ihrer Wechselwirkungen, die bei "normalen" Geschwindigkeiten verborgen bleiben. Die gewonnenen Daten zeigen eine hohe Übereinstimmung mit dem derzeit exaktesten theoretischen Modell für molekulare Stöße. Die Forschungsergebnisse werden in der internationalen Fachzeitschrift "Science" veröffentlicht (Science, 15. September 2006).


Schematische Darstellung des experimentellen Aufbaus sowie des Energieniveauschemas eines OH-Radikals. Dazu werden OH-Radikale durch einen Stark-Abbremser geleitet. Dieser kann die Molekülgeschwindigkeit präzise zwischen 33 und 700 Meter pro Sekunde einstellen. Verlassen die Radikale den Abbremser, stoßen sie mit Xenon-Atome zusammen. Mit einem Laserstrahl kann man dann die detaillierte Quantenstruktur der OH-Radikale untersuchen. Hierbei zeigt sich, dass die Gesetze der Quantenmechanik nur diskrete rotationelle Energiezustände zulassen. Bild: Fritz-Haber-Institut

Lässt man Teilchen unter kontrollierten Bedingungen zusammenstoßen und misst danach ihre Eigenschaften, erhält man Informationen über ihre Struktur und ihre Wechselwirkungen. Die Geschwindigkeit, mit der die Teilchen aufeinandertreffen, ist hierbei ein entscheidender Parameter. In großen Teilchenbeschleunigern, wie beispielsweise am Europäischen Forschungszentrum CERN, läßt man geladene Teilchen mit sehr hohen Geschwindigkeiten aufeinander prallen und kann diese dadurch in ihre kleinsten Bausteine zerlegen.

Wissenschaftler des Fritz-Haber-Instituts in Berlin haben nun unter Leitung von Prof. Gerard Meijer neue Experimente durchgeführt, bei denen neutrale Moleküle mit sehr niedriger Geschwindigkeit gegen Atome stoßen. Ihre Geschwindigkeit ist so gering, dass die Moleküle weder zerstört werden noch in kleinere Teilchen zerfallen. Solche Stöße machen vielmehr Details der molekularen Quantenstruktur sichtbar, wenn man die Entstehung langlebiger Molekülkomplexe verstehen will.

Denn normalerweise haben neutrale Moleküle hohe Geschwindigkeiten, die sich relativ breit um einen Mittelwert von rund fünfhundert Meter pro Sekunde verteilen. Das ist zu schnell, um bei einem Stoß ihre molekulare Detailstruktur beobachten zu können. Bis vor kurzem war es allerdings auch schwierig, Moleküle entsprechend abbremsen zu können. Das gelang nun mit eine besonderen Molekülbremse, der in den vergangenen Jahren von der Forschungsgruppe "Kalte Moleküle" am FOM-Institut für Plasmaphysik "Rijnhuizen" in Nieuwegein, Niederlande, entwickelt worden war, die ihre Forschung seit Ende 2003 am Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin fortsetzt.

Der Abbremser funktioniert genau gegenteilig zu einem Teilchenbeschleuniger und ermöglicht den Forschern, die Molekülgeschwindigkeiten auf einer Skala zwischen 33 und 700 Meter pro Sekunde genau einzustellen. Zudem haben dann alle Moleküle, die den Abbremser verlassen, in etwa die gleiche Geschwindigkeit bezogen auf den eingestellten Mittelwert.

Um die Wirksamkeit dieser Methode zu demonstrieren, liessen die Forscher OH-Moleküle (ein Radikal, das eine wichtige Rolle in der Chemie der Atmosphäre spielt) auf Xenon-Atome stoßen. In Abhängigkeit von der Stoßenergie können die OH-Moleküle durch den Stoßprozess in Rotation versetzt werden. Die Gesetze der Quantenmechanik schreiben nun vor, dass sich die Drehgeschwindigkeit von Molekülen nur stufenweise erhöhen läßt. Genau dies wurde nun bei den Berliner Experimenten sichtbar. Danach verglichen die Forscher ihre Ergebnisse mit Berechnungen des theoretischen Chemikers Gerrit Groenenboom aus Nijmegen, Niederlande, die . auf Basis der bis dato präzisesten Theorie durchgeführt wurden. Die experimentellen und die rechnerischen Werte zeigten eine hohe Übereinstimmung.

Die neue Technik ermöglicht eine Vielzahl interessanter Versuche. So wollen die Forscher in Zukunft nicht nur Atome und Moleküle, sondern auch Molekül auf Molekül treffen lassen und dabei die Geschwindigkeit beider Stoßpartner präzise variieren. Hierfür sind dann zwei Molekülabbremser erforderlich. Damit kann man die Genauigkeit der Stoßenergie um das Zehnfache erhöhen. Auf diese Weise sollten weitere Details der molekularen Quantenstruktur sichtbar werden.

Doch der Molekülabbremser ermöglicht auch neuartige Experimente auf dem Gebiet der Physikalischen Chemie. Denn steht gerade genug Energie für eine chemische Reaktion zur Verfügung, so dominieren Quanteneffekte das Verhalten der Reaktionspartner. Doch was unter solchen Bedingungen genau passiert, ist noch größtenteils unbekannt. Der Molekülabbremser ist daher ein ideales Instument, um solche Prozesse genauestens zu studieren.

Originalveröffentlichung:

Joop Gilijamse, Steven Hoekstra, Sebastiaan van de Meerakker, Gerrit Groenenboom and Gerard Meijer
Near-threshold inelastic collisions using molecular beams with a tunable velocity

Science, 15 September 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Molekülabbremser Molekülbremse Quantenstruktur

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie