Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltrekord bei FLASH in Hamburg

07.09.2006
Der Freie-Elektronen-Laser bei DESY erreicht höchste Leistung bei kleinsten Wellenlängen und dringt ins Wasserfenster vor.

Beim weltweiten Wettlauf um die höchste Laserleistung bei kürzesten Wellenlängen hat die FLASH-Anlage beim Forschungszentrum DESY in Hamburg einen neuen Weltrekord aufgestellt: Der Freie-Elektronen-Laser erzeugte im Betrieb Laserlichtblitze mit Wellenlängen zwischen 13,5 und 13,8 Nanometern mit einer mittleren Leistung von 10 Milliwatt bei Rekordenergien von bis zu 170 Mikrojoule pro Puls - und das 150 Mal pro Sekunde. Da die Lichtblitze von FLASH nur etwa 10 Femtosekunden lang sind, beträgt die Spitzenleistung pro Puls bis zu 10 Gigawatt. Diese Leistungen sind höher als alles, was heute selbst an den größten Plasma-Röntgenlaseranlagen der Welt erreicht werden kann. Ein bestimmter Anteil der von FLASH produzierten Strahlung, die so genannte fünfte Harmonische, erreicht sogar Wellenlängen von 2,7 Nanometern. Damit dringt FLASH weit in das für die Untersuchung biologischer Proben grundlegend wichtige Wasserfenster vor.

"FLASH ist gegenwärtig die einzige Laseranlage weltweit, die schnell gepulste, leistungsstarke und ultrakurze Lichtblitze im Röntgenbereich liefert", so DESY-Forschungsdirektor Professor Jochen R. Schneider. "Damit eröffnet FLASH Forschern fast aller Naturwissenschaften ganz neue Experimentierfelder, sogar innerhalb des so genannten Wasserfensters zwischen 2,3 und 4,4 Nanometern. In diesem Wellenlängenbereich absorbieren die Kohlenstoffatome in organischer Materie die Strahlung sehr gut, während das umgebende Wasser transparent bleibt. Dadurch werden bisher undurchführbare Untersuchungen möglich, etwa holografische Aufnahmen von Zellsystemen in ihrer natürlichen in vitro Umgebung mit Hilfe eines einzigen Lichtpulses." Wichtig ist auch der Bereich um 13,5 Nanometer, denn Strahlung dieser Wellenlänge wird in der Halbleiterindustrie benötigt, um mit Hilfe der EUV-Lithographie die zukünftige Generation von Mikroprozessoren herzustellen.

Der Freie-Elektronen-Laser FLASH, der seit August 2005 für die Forschung zur Verfügung steht, erzeugt derzeit Laserstrahlung mit Grundwellenlängen zwischen 13,1 und 40 Nanometern. Die mittlere Energie pro Puls bei 13,5 bis 13,8 Nanometern beträgt bis zu 70 Mikrojoule bei einer bisher noch nie dagewesenen Wiederholrate von 150 Pulsen pro Sekunde, so dass die mittlere Leistung Werte von über 10 Milliwatt erreicht. Die Wiederholrate soll in Zukunft auf einige Tausend Pulse pro Sekunde gesteigert werden, während die mittlere Leistung gleichzeitig auf über 100 Milliwatt anwachsen wird. Gleichzeitig erzeugte FLASH kohärente Strahlung bei der dritten und fünften Harmonischen der Grundwellenlänge von 13,7 Nanometern, das heißt bei 4,6 bzw. 2,7 Nanometern mit Pulsdauern von weniger als 10 Femtosekunden. Die entsprechenden Pulsenergien liegen bei etwa 1 Mikrojoule bzw. 10 Nanojoule pro Puls.

... mehr zu:
»Flash »Nanometer »Wellenlänge

Im Jahr 2007 wird FLASH nach einem entsprechenden Umbau Strahlung erzeugen, deren Grundwellenlänge zwischen 6 und 60 Nanometern beliebig eingestellt werden kann. Dann wird FLASH in den höheren Harmonischen ultrakurze Laserpulse mit Energien im Mikrojoulebereich liefern bei Wellenlängen, die innerhalb und an den Grenzen des Wasserfensters beliebig eingestellt werden können - und eröffnet noch nie dagewesene Möglichkeiten für hochauflösende zwei- und dreidimensionale in-vitro-Untersuchungen an biologischen Proben; das gilt sowohl für Spektroskopie wie auch für Abbildungen.

FLASH ist zurzeit weltweit die einzige Freie-Elektronen-Laser-Anlage für extreme ultraviolette Strahlung und weiche Röntgenstrahlung. Etwa 200 Wissenschaftler von 60 Instituten aus 11 Ländern nutzen das intensive Laserlicht zurzeit an bislang vier Messplätzen für ihre Experimente. Interessenten für viele weitere Projekte gibt es bereits, sie kommen aus verschiedenen Bereichen der Physik, Chemie oder Molekularbiologie. Die FLASH-Anlage spielt außerdem eine wichtige Pionierrolle für künftige größere Freie-Elektronen-Laser-Anlagen, die Laserblitze von noch kürzerer Wellenlänge erzeugen werden. Dazu gehört insbesondere der 3,4 Kilometer lange europäische Freie-Elektronen-Röntgenlaser XFEL, dessen Realisierung zurzeit bei DESY in internationaler Zusammenarbeit vorbereitet wird und der im Jahr 2013 seinen Betrieb aufnehmen wird.

Die Rekordleistung mit FLASH wurde vom DESY FLASH Team in Zusammenarbeit mit internationalen Partnern erreicht, die Charakterisierung der Photonenstrahlung wurde in Zusammenarbeit mit Wissenschaftlern von LIXAM (CNRS/Université Paris-Sud), IRCEP (Queen's University Belfast) und NCPST (Dublin City University) durchgeführt.

Petra Folkerts | idw
Weitere Informationen:
http://www.desy.de/
http://www.xfel.net/de/

Weitere Berichte zu: Flash Nanometer Wellenlänge

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau