Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltweit erster atomarer Transistor entwickelt

15.08.2006
Karlsruher Wissenschaftler setzen Meilenstein auf dem Weg zur atomaren Elektronik

Bauteile technischer Geräte werden immer kleiner. Auf dem Weg der Miniaturisierung hat die Industrie den Mikrometerbereich hinter sich gelassen - inzwischen gibt es elektronische Bauteile, die zwischen 70 und 100 Nanometer groß sind. Wissenschaftler der Universität Karlsruhe haben nun den weltweit ersten atomaren Transistor entwickelt - ein Meilenstein auf dem Weg zur atomaren Elektronik. Damit sind die Karlsruher Wissenschaftler in der Lage, einen Stromkreis mit Hilfe eines einzigen Atoms zu öffnen und zu schließen. "Der Einzelatom-Transistor funktioniert durch die kontrollierte Umlagerung eines einzigen Silberatoms", erklärt Professor Dr. Thomas Schimmel, der mit seiner Arbeitsgruppe am DFG-Centrum für Funktionelle Nanostrukturen (CFN) der Universität und am Forschungszentrum Karlsruhe beteiligt ist. Schimmel: "Bei der Entwicklung haben wir einen weltweit neuen Ansatz realisiert."

Das Bauteil funktioniert wie ein Schalter, durch den ein elektrischer Stromkreis geöffnet und geschlossen werden kann: Auf zwei Metallelektroden, zwischen denen eine winzige Lücke den Stromkreis unterbricht, wird so lange Silber abgeschieden, bis ein einzelnes Silberatom die beiden Pole verbindet. Dadurch wird der Stromkreis geschlossen und Strom fließt. Schimmel: "Dieses Atom lassen wir hin- und herklappen, sodass der Stromkreis entweder geöffnet oder geschlossen ist." Der Zustand des "klappbaren Atoms" wird über eine unabhängige dritte Elektrode kontrolliert. Wie bei einem konventionellen Transistor kann so der Strom zwischen zwei Elektroden durch eine außen angelegte Steuerspannung ein- und ausgeschaltet werden. Schimmel: "Der atomare Transistor ist damit realisiert." Abbildung 1 verdeutlicht die Funktionsweise.

Die Perspektiven für den Einzelatom-Transistor schätzt Schimmel als spannend ein: "Unsere gesamte Computer- und Informationstechnologie beruht auf der einfachen Fähigkeit, einen Strom von A nach B durch eine unabhängige Steuerelektrode C schalten zu können." Da das "Brücken-Atom" das einzige bewegliche Teil des Einzelatom-Transistors ist, könnte er im Vergleich zu herkömmlichen Technologien prinzipiell auch bei extrem hohen Frequenzen arbeiten. Darüber hinaus lassen sich atomare Transistoren laut Schimmel bereits mit einer Spannung von wenigen Millivolt schalten, was den Energieverbrauch im Vergleich zu herkömmlichen Transistoren auf Halbleiterbasis deutlich senken würde. Schimmel: "Entscheidend aber ist, dass sich zwischen dieser 'Atomaren Elektronik' einerseits und der 'Makrowelt' mit konventioneller Elektronik andererseits ganz einfach Schnittstellen einrichten lassen." So können mit dem Strom, der durch ein einzelnes Transistor-Atom fließt, über einen konventionellen Operationsverstärker mühelos elektrische Geräte geschaltet werden. Schimmels Entwicklung eröffnet als erster Transistor auf der Skala einzelner Atome faszinierende Perspektiven in Richtung atomarer Elektronik und maßgeschneiderter quantenelektronischer Systeme ("Quantum System Engineering") bei Raumtemperatur.

Funktionsweise eines Transistors

Ein Transistor ist ein elektronisches Bauelement zum Schalten und Verstärken elektrischer Ströme und Spannungen. Im Gegensatz zu einem einfachen Schalter wird der Transistor durch eine extern angelegte, unabhängige Steuerspannung bedient. Die bisher gängigen Transistoren bestehen aus Halbleitermaterialien. Die Arbeitsgruppe um Professor Dr. Thomas Schimmel hat mit dem entwickelten Einzelatom-Transistor einen weltweit neuen Ansatz gefunden.

Weitere Informationen:
Dr. Gerd König
DFG-Centrum für Funktionelle Nanostrukturen der Universität Karlsruhe (TH)
Telefon: 0721/608-3409
E-Mail: gerd.koenig@cfn.uni-karlsruhe.de

Dr. Elisabeth Zuber-Knost | idw
Weitere Informationen:
http://www.presse.uni-karlsruhe.de/6163.php
http://www.cfn.uni-karlsruhe.de/web/index.php?tabId=104

Weitere Berichte zu: Einzelatom-Transistor Transistor

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen
19.06.2018 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics