Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

LOFAR - ein neues Radioteleskop in Deutschland

05.05.2006


Deutsche Astronomen haben einen wichtigen Schritt in Richtung auf ein neues Großteleskop gemacht: LOFAR (Low Frequency Array), ein neuartiges Radioteleskop für kosmische Meter-Wellen, das in einigen Jahren das größte Teleskop der Welt sein wird. Am 3. Mai 2006 fand am Astrophysikalischen Institut Potsdam die erste Sitzung des Deutschen Konsortiums zur Messung langer Radiowellen statt. Zum Vorsitzenden wurde Prof. Anton Zensus, Direktor am Max-Planck-Institut für Radioastronomie in Bonn, und Prof. Marcus Brüggen (Internationale Universität Bremen) zu seinem Stellvertreter gewählt.


LOFAR-Antennen für Radio-Wellenlängen 4-10 Meter. Foto: ASTRON Dwingeloo/ Niederlande


LOFAR-Antennen für Foto: Radio-Wellenlängen 1-3 Meter. Je 96 Antennen beider Typen bilden eine Station. Foto: ASTRON Dwingeloo/ Niederlande



Mitglieder des Konsortiums sind die astronomischen Institute der Universitäten Bochum, Bonn und Köln, das Max-Planck-Institut für Radioastronomie Bonn, die Internationale Universität Bremen, das Max-Planck-Institut für Astrophysik Garching, die Sternwarte Hamburg, das Forschungszentrum Jülich, das Astrophysikalische Institut Potsdam und die Thüringer Landessternwarte Tautenburg. Gemeinsames Ziel ist der Aufbau von Stationen aus Antennen, die im Verbund mit weiteren Stationen in den Niederlanden das neue Radioteleskop LOFAR bilden. LOFAR ist erstmals in der Lage, langwellige Radiostrahlung von Wasserstoffgas aus der Frühzeit des Universums zu messen, die durch die Expansion des Kosmos von ursprünglich 21cm auf etwa die zehnfache Wellenlänge "auseinander gezogen" wurde. Langwellige Radiostrahlung stammt außerdem von schnellen Elektronen, die sich in schwachen Magnetfeldern bewegen. Die deutschen Wissenschaftler möchten daher mit LOFAR auch Magnetfelder in Milchstraßensystemen und in der Umgebung Schwarzer Löcher beobachten. Planeten in anderen Sonnensystemen können ebenfalls durch ihre langwellige Radiostrahlung aufgespürt werden. Auch die Radiostrahlung von Eruptionen auf der Sonne lässt sich mit LOFAR mit einer bislang unerreichten Präzision verfolgen, und damit kann der Einfluss der Sonne auf unsere Zivilisation besser verstanden werden.



Klassische Radioteleskope sammeln - wie Satellitenschüsseln - die Strahlung mit Metallspiegeln, und computergesteuerte Motoren bewegen das Teleskop entlang der scheinbaren Bahn einer Radioquelle am Himmel. LOFAR ist das erste digitale Radioteleskop, das keine beweglichen Teile und Motoren mehr benötigt. Das Teleskop besteht aus einer großen Zahl von Antennen, die fest am Boden montiert und in Stationen (Antennenfeldern) angeordnet sind. Damit wird der gesamte Himmel auf einmal erfasst. Die Blickrichtung und die Größe des Gesichtsfeldes werden elektronisch gesteuert. Ein zentraler Supercomputer nimmt die digitalen Signale aller Antennen auf und kombiniert sie. LOFAR kann in mehrere Richtungen gleichzeitig "sehen", also mehrere Astronomen-Teams mit Daten versorgen.

Das radioastronomische Institut ASTRON bei Dwingeloo in den Niederlanden baut zur Zeit in Westfriesland die erste von insgesamt 77 Stationen, die ab 2009, über die gesamten Niederlande verteilt, das niederländische LOFAR bilden werden. Der zentrale Rechner Blue Gene/L, einer der schnellsten Rechner der Welt, arbeitet bereits in der Universität von Groningen. Seine Rechenleistung von 27 Teraflops und der Datenspeicher von 1 Petabyte (1015 Byte) reicht aus, um die gewaltige Datenrate von 500 Gbit/s, die ständig von den Stationen eingeht, in Echtzeit zu Radiobildern verarbeiten zu können.

Um mit LOFAR eine Winkelauflösung von besser als eine Bogensekunde zu erreichen, reicht eine Ausdehnung des Teleskops über die Größe der Niederlande nicht aus. Daher wurde beschlossen, LOFAR nach Deutschland zu erweitern und mit modernsten Datenleitungen zu verbinden. Die erste deutsche LOFAR-Station mit einer Größe von etwa 110 x 60 Metern wird noch in diesem Jahr in unmittelbarer Nähe des 100m-Radioteleskops bei Bad Münstereifel-Effelsberg in Zusammenarbeit zwischen ASTRON und dem Bonner Max-Planck-Institut für Radioastronomie aufgebaut. Weitere 6 deutsche LOFAR-Stationen, sind bereits in konkreter Planung (Abb. 3). Das Ziel sind 12 deutsche Stationen bis zum Jahr 2012. Zusammen mit den niederländischen Stationen wird LOFAR dann die größte vernetzte Teleskopanlage der Welt sein.

Lokale Kontaktperson:
Shehan Bonatz
Astrophysikalisches Institut Potsdam (AIP)
Tel. 0331-7499-469
E-Mail: presse@aip.de

Kontaktperson für das Gesamtprojekt:
Dr. Rainer Beck
Max-Planck-Institut für Radioastronomie, Bonn
E-Mail: rbeck@mpifr-bonn.mpg.de

Shehan Bonatz | idw
Weitere Informationen:
http://www.aip.de
http://www.lofar.org

Weitere Berichte zu: LOFAR Radioastronomie Radiostrahlung Radioteleskop Teleskop

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen