Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

LOFAR - ein neues Radioteleskop in Deutschland

05.05.2006


Deutsche Astronomen haben einen wichtigen Schritt in Richtung auf ein neues Großteleskop gemacht: LOFAR (Low Frequency Array), ein neuartiges Radioteleskop für kosmische Meter-Wellen, das in einigen Jahren das größte Teleskop der Welt sein wird. Am 3. Mai 2006 fand am Astrophysikalischen Institut Potsdam die erste Sitzung des Deutschen Konsortiums zur Messung langer Radiowellen statt. Zum Vorsitzenden wurde Prof. Anton Zensus, Direktor am Max-Planck-Institut für Radioastronomie in Bonn, und Prof. Marcus Brüggen (Internationale Universität Bremen) zu seinem Stellvertreter gewählt.


LOFAR-Antennen für Radio-Wellenlängen 4-10 Meter. Foto: ASTRON Dwingeloo/ Niederlande


LOFAR-Antennen für Foto: Radio-Wellenlängen 1-3 Meter. Je 96 Antennen beider Typen bilden eine Station. Foto: ASTRON Dwingeloo/ Niederlande



Mitglieder des Konsortiums sind die astronomischen Institute der Universitäten Bochum, Bonn und Köln, das Max-Planck-Institut für Radioastronomie Bonn, die Internationale Universität Bremen, das Max-Planck-Institut für Astrophysik Garching, die Sternwarte Hamburg, das Forschungszentrum Jülich, das Astrophysikalische Institut Potsdam und die Thüringer Landessternwarte Tautenburg. Gemeinsames Ziel ist der Aufbau von Stationen aus Antennen, die im Verbund mit weiteren Stationen in den Niederlanden das neue Radioteleskop LOFAR bilden. LOFAR ist erstmals in der Lage, langwellige Radiostrahlung von Wasserstoffgas aus der Frühzeit des Universums zu messen, die durch die Expansion des Kosmos von ursprünglich 21cm auf etwa die zehnfache Wellenlänge "auseinander gezogen" wurde. Langwellige Radiostrahlung stammt außerdem von schnellen Elektronen, die sich in schwachen Magnetfeldern bewegen. Die deutschen Wissenschaftler möchten daher mit LOFAR auch Magnetfelder in Milchstraßensystemen und in der Umgebung Schwarzer Löcher beobachten. Planeten in anderen Sonnensystemen können ebenfalls durch ihre langwellige Radiostrahlung aufgespürt werden. Auch die Radiostrahlung von Eruptionen auf der Sonne lässt sich mit LOFAR mit einer bislang unerreichten Präzision verfolgen, und damit kann der Einfluss der Sonne auf unsere Zivilisation besser verstanden werden.



Klassische Radioteleskope sammeln - wie Satellitenschüsseln - die Strahlung mit Metallspiegeln, und computergesteuerte Motoren bewegen das Teleskop entlang der scheinbaren Bahn einer Radioquelle am Himmel. LOFAR ist das erste digitale Radioteleskop, das keine beweglichen Teile und Motoren mehr benötigt. Das Teleskop besteht aus einer großen Zahl von Antennen, die fest am Boden montiert und in Stationen (Antennenfeldern) angeordnet sind. Damit wird der gesamte Himmel auf einmal erfasst. Die Blickrichtung und die Größe des Gesichtsfeldes werden elektronisch gesteuert. Ein zentraler Supercomputer nimmt die digitalen Signale aller Antennen auf und kombiniert sie. LOFAR kann in mehrere Richtungen gleichzeitig "sehen", also mehrere Astronomen-Teams mit Daten versorgen.

Das radioastronomische Institut ASTRON bei Dwingeloo in den Niederlanden baut zur Zeit in Westfriesland die erste von insgesamt 77 Stationen, die ab 2009, über die gesamten Niederlande verteilt, das niederländische LOFAR bilden werden. Der zentrale Rechner Blue Gene/L, einer der schnellsten Rechner der Welt, arbeitet bereits in der Universität von Groningen. Seine Rechenleistung von 27 Teraflops und der Datenspeicher von 1 Petabyte (1015 Byte) reicht aus, um die gewaltige Datenrate von 500 Gbit/s, die ständig von den Stationen eingeht, in Echtzeit zu Radiobildern verarbeiten zu können.

Um mit LOFAR eine Winkelauflösung von besser als eine Bogensekunde zu erreichen, reicht eine Ausdehnung des Teleskops über die Größe der Niederlande nicht aus. Daher wurde beschlossen, LOFAR nach Deutschland zu erweitern und mit modernsten Datenleitungen zu verbinden. Die erste deutsche LOFAR-Station mit einer Größe von etwa 110 x 60 Metern wird noch in diesem Jahr in unmittelbarer Nähe des 100m-Radioteleskops bei Bad Münstereifel-Effelsberg in Zusammenarbeit zwischen ASTRON und dem Bonner Max-Planck-Institut für Radioastronomie aufgebaut. Weitere 6 deutsche LOFAR-Stationen, sind bereits in konkreter Planung (Abb. 3). Das Ziel sind 12 deutsche Stationen bis zum Jahr 2012. Zusammen mit den niederländischen Stationen wird LOFAR dann die größte vernetzte Teleskopanlage der Welt sein.

Lokale Kontaktperson:
Shehan Bonatz
Astrophysikalisches Institut Potsdam (AIP)
Tel. 0331-7499-469
E-Mail: presse@aip.de

Kontaktperson für das Gesamtprojekt:
Dr. Rainer Beck
Max-Planck-Institut für Radioastronomie, Bonn
E-Mail: rbeck@mpifr-bonn.mpg.de

Shehan Bonatz | idw
Weitere Informationen:
http://www.aip.de
http://www.lofar.org

Weitere Berichte zu: LOFAR Radioastronomie Radiostrahlung Radioteleskop Teleskop

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie