Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

LOFAR - ein neues Radioteleskop in Deutschland

05.05.2006


Deutsche Astronomen haben einen wichtigen Schritt in Richtung auf ein neues Großteleskop gemacht: LOFAR (Low Frequency Array), ein neuartiges Radioteleskop für kosmische Meter-Wellen, das in einigen Jahren das größte Teleskop der Welt sein wird. Am 3. Mai 2006 fand am Astrophysikalischen Institut Potsdam die erste Sitzung des Deutschen Konsortiums zur Messung langer Radiowellen statt. Zum Vorsitzenden wurde Prof. Anton Zensus, Direktor am Max-Planck-Institut für Radioastronomie in Bonn, und Prof. Marcus Brüggen (Internationale Universität Bremen) zu seinem Stellvertreter gewählt.


LOFAR-Antennen für Radio-Wellenlängen 4-10 Meter. Foto: ASTRON Dwingeloo/ Niederlande


LOFAR-Antennen für Foto: Radio-Wellenlängen 1-3 Meter. Je 96 Antennen beider Typen bilden eine Station. Foto: ASTRON Dwingeloo/ Niederlande



Mitglieder des Konsortiums sind die astronomischen Institute der Universitäten Bochum, Bonn und Köln, das Max-Planck-Institut für Radioastronomie Bonn, die Internationale Universität Bremen, das Max-Planck-Institut für Astrophysik Garching, die Sternwarte Hamburg, das Forschungszentrum Jülich, das Astrophysikalische Institut Potsdam und die Thüringer Landessternwarte Tautenburg. Gemeinsames Ziel ist der Aufbau von Stationen aus Antennen, die im Verbund mit weiteren Stationen in den Niederlanden das neue Radioteleskop LOFAR bilden. LOFAR ist erstmals in der Lage, langwellige Radiostrahlung von Wasserstoffgas aus der Frühzeit des Universums zu messen, die durch die Expansion des Kosmos von ursprünglich 21cm auf etwa die zehnfache Wellenlänge "auseinander gezogen" wurde. Langwellige Radiostrahlung stammt außerdem von schnellen Elektronen, die sich in schwachen Magnetfeldern bewegen. Die deutschen Wissenschaftler möchten daher mit LOFAR auch Magnetfelder in Milchstraßensystemen und in der Umgebung Schwarzer Löcher beobachten. Planeten in anderen Sonnensystemen können ebenfalls durch ihre langwellige Radiostrahlung aufgespürt werden. Auch die Radiostrahlung von Eruptionen auf der Sonne lässt sich mit LOFAR mit einer bislang unerreichten Präzision verfolgen, und damit kann der Einfluss der Sonne auf unsere Zivilisation besser verstanden werden.



Klassische Radioteleskope sammeln - wie Satellitenschüsseln - die Strahlung mit Metallspiegeln, und computergesteuerte Motoren bewegen das Teleskop entlang der scheinbaren Bahn einer Radioquelle am Himmel. LOFAR ist das erste digitale Radioteleskop, das keine beweglichen Teile und Motoren mehr benötigt. Das Teleskop besteht aus einer großen Zahl von Antennen, die fest am Boden montiert und in Stationen (Antennenfeldern) angeordnet sind. Damit wird der gesamte Himmel auf einmal erfasst. Die Blickrichtung und die Größe des Gesichtsfeldes werden elektronisch gesteuert. Ein zentraler Supercomputer nimmt die digitalen Signale aller Antennen auf und kombiniert sie. LOFAR kann in mehrere Richtungen gleichzeitig "sehen", also mehrere Astronomen-Teams mit Daten versorgen.

Das radioastronomische Institut ASTRON bei Dwingeloo in den Niederlanden baut zur Zeit in Westfriesland die erste von insgesamt 77 Stationen, die ab 2009, über die gesamten Niederlande verteilt, das niederländische LOFAR bilden werden. Der zentrale Rechner Blue Gene/L, einer der schnellsten Rechner der Welt, arbeitet bereits in der Universität von Groningen. Seine Rechenleistung von 27 Teraflops und der Datenspeicher von 1 Petabyte (1015 Byte) reicht aus, um die gewaltige Datenrate von 500 Gbit/s, die ständig von den Stationen eingeht, in Echtzeit zu Radiobildern verarbeiten zu können.

Um mit LOFAR eine Winkelauflösung von besser als eine Bogensekunde zu erreichen, reicht eine Ausdehnung des Teleskops über die Größe der Niederlande nicht aus. Daher wurde beschlossen, LOFAR nach Deutschland zu erweitern und mit modernsten Datenleitungen zu verbinden. Die erste deutsche LOFAR-Station mit einer Größe von etwa 110 x 60 Metern wird noch in diesem Jahr in unmittelbarer Nähe des 100m-Radioteleskops bei Bad Münstereifel-Effelsberg in Zusammenarbeit zwischen ASTRON und dem Bonner Max-Planck-Institut für Radioastronomie aufgebaut. Weitere 6 deutsche LOFAR-Stationen, sind bereits in konkreter Planung (Abb. 3). Das Ziel sind 12 deutsche Stationen bis zum Jahr 2012. Zusammen mit den niederländischen Stationen wird LOFAR dann die größte vernetzte Teleskopanlage der Welt sein.

Lokale Kontaktperson:
Shehan Bonatz
Astrophysikalisches Institut Potsdam (AIP)
Tel. 0331-7499-469
E-Mail: presse@aip.de

Kontaktperson für das Gesamtprojekt:
Dr. Rainer Beck
Max-Planck-Institut für Radioastronomie, Bonn
E-Mail: rbeck@mpifr-bonn.mpg.de

Shehan Bonatz | idw
Weitere Informationen:
http://www.aip.de
http://www.lofar.org

Weitere Berichte zu: LOFAR Radioastronomie Radiostrahlung Radioteleskop Teleskop

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften