Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Meteorite als kosmische Schatzkammern

05.05.2006


Amerikanisch-deutschem Forscherteam gelingt es erstmals, interstellare organische Materie in Meteoriten nachzuweisen


Lokale Anreicherungen (gelb) des Isotops Stickstoff-15 in unlöslichem organischen Material aus dem EET 92042-Meteoriten. Diese "Hotspots" zeugen von chemischen Prozessen in der interstellaren Wolke, aus der unser Sonnensystem vor 4,6 Milliarden Jahren entstanden ist. Bild: Max-Planck-Institut für Chemie



Meteorite haben sich ein weiteres Mal als ein wissenschaftliches Schatzkästchen entpuppt. Forscher des Carnegie-Instituts in Washington, der Harvard-Universität in Cambridge und des Max-Planck-Instituts für Chemie in Mainz konnten jetzt nachweisen, dass primitive Meteorite nicht nur Hochtemperatur-Sternenstaub enthalten, sondern auch Spuren ursprünglicher oder nur wenig veränderter organischer Substanzen. Diese organische Materie bildete sich vermutlich bei tiefen Temperaturen in der interstellaren Gas- und Staubwolke, aus der unser Sonnensystem vor vielen Milliarden Jahren entstanden ist (Science, 5. Mai 2006).



Als unser Sonnensystem vor ca. 4,6 Milliarden Jahren aus dem Kollaps einer interstellaren Gas- und Staubwolke entstand, wurde ein großer Teil der ursprünglich vorhandenen präsolaren Materie - also Sternenstaub und interstellarer organischer Staub - durch die dabei freigesetzte Wärme zerstört oder verändert. Relikte dieser präsolaren Materie finden sich heute nur noch in kleinen, thermisch wenig veränderten planetaren Körpern, wie Kometen und Asteroiden. Über Meteorite und interplanetare Staubteilchen gelangt dieses Material auch zu uns auf die Erde, wobei man annimmt, dass Kometen das ursprünglichste Material in unserem Sonnensystem darstellen.

Ein Teil der interplanetaren Staubteilchen stammt vermutlich aus Kometen, findet man in diesen doch vergleichsweise große Mengen an Sternenstaub und organischer Materie interstellaren Ursprungs. Letztere könnte eine wichtige Quelle von präbiotischen Molekülen, den Bausteinen für die Entstehung von Leben auf der Erde, gewesen sein. Präsolare Materie findet man auch in primitiven Meteoriten, deren Herkunft im Asteroidengürtel liegt. Anders als bei den interplanetaren Staubteilchen ist man bisher aber bei den Meteoriten davon ausgegangen, dass interstellares organisches Material infolge thermischer Prozesse im Mutterkörper oder im solaren Nebel stark verändert wurde und dass damit wichtige Informationen über die ursprünglichen Trägerphasen verloren gegangen sind.

Dem internationalen Forscherteam vom Carnegie-Institut in Washington, der Harvard-Universität und vom Mainzer Max-Planck-Institut für Chemie ist es nun erstmals gelungen, organische Materie, die vermutlich interstellaren Ursprungs ist und weitestgehend unverändert geblieben ist, auch in Meteoriten nachzuweisen. Die Identifizierung erfolgte anhand spezifischer Wasserstoff- und Stickstoff-Isotopensignaturen in kohligen Chondriten, einer Gruppe der primitiven Meteorite.

Wie das Wissenschaftsmagazin Science berichtet, fanden die Forscher in den Proben unlöslicher organischer Materie aus kohligen Chondriten lokal starke Anreicherungen der seltenen Isotope Deuterium sowie Stickstoff-15, wie man sie in dieser Größenordnung bisher nur in interplanetaren Staubteilchen gefunden hat. "Diese Signaturen können durch Ionen-Molekül-Reaktionen bei tiefen Temperaturen in interstellaren Wolken erklärt werden", erläutert Peter Hoppe vom Max-Planck-Institut für Chemie. Für ihre Untersuchungen standen den Forschern zwei besondere Ionenmikrosonden in Washington und Mainz zur Verfügung. Die Mainzer NanoSIMS-Ionenmikrosonde, ein so genanntes Sekundärionen-Massenspektrometer, ermöglicht Isotopenuntersuchungen mit einer räumlichen Auflösung von weniger als 100 Millionstel Millimeter (s. Abb.). Wie die Messungen ergaben, sind die Anreicherungen von Deuterium und Stickstoff-15 räumlich nicht korreliert, was auf unterschiedliche Entstehungsprozesse und unterschiedliche organische Trägerphasen hindeutet.

Die Beobachtungen des amerikanisch-deutschen Forscherteams lassen vermuten, dass die interstellare organische Materie zu einem Zeitpunkt in den Asteroidengürtel gelangt ist, als die Temperatur dort bereits hinreichend niedrig war. Da unverändertes interstellares organisches Material nicht nur in interplanetaren Staubteilchen sondern auch in Meteoriten zu finden ist, stehen nun wesentlich größere Mengen dieser wertvollen kosmischen Materie für detaillierte Laboruntersuchungen zur Verfügung. Damit eröffnen sich neue Möglichkeiten, die Bildung organischer Substanzen und andere chemische Prozesse im interstellaren Medium zu erforschen.[PH]

Originalveröffentlichung:

Henner Busemann, Andrea F. Young, Conel M. O’D. Alexander, Peter Hoppe, Sujoy Mukhopadhyay, Larry R. Nittler
Interstellar Chemistry Recorded in Organic Matter from Primitive Meteorites
Science, 5 May 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Komet Meteorit Sonnensystem Staubteilchen Temperatur

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie