Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Rekord in der Optik - ein einzelnes Ion als Quantensonde

01.11.2001


Präzise Kontrolle der Wechselwirkung zwischen gespeichertem Ion und optischem Feld als Grundlage für Einphotonenpulse und Quantencomputer


Einer Forschergruppe am Max-Planck-Institut für Quantenoptik (MPQ) in Garching ist es mit Hilfe einer Ionenfalle gelungen, ein einzelnes Calcium-Ion präzise und dauerhaft in einem optischen Feld zu positionieren (nature, 1. November 2001). Mit bisher nicht erreichter Genauigkeit und störungsfrei bestimmten die Wissenschaftler um Prof. Herbert Walther so die räumliche Verteilung des Felds im Nanometerbereich. Mit der exakten Kontrolle der Wechselwirkung zwischen Atom und Strahlungsfeld wurde ein wichtiger wissenschaftlicher Durchbruch erzielt - nicht nur für die Präzisionsmessung optischer Felder, sondern auch für zukünftige Anwendungen. Diese reichen von der Erzeugung von Licht mit exotischen Quanteneigenschaften bis zum Bau effizienter Schaltelemente für einen Quantencomputer.

Die Wechselwirkung zwischen Licht und Materie ist von grundlegender Bedeutung für das Verständnis von Vorgängen im atomaren Bereich. In der makroskopischen Welt tritt nur die über eine große Anzahl von Atomen gemittelte Wirkung des Lichtfelds in Erscheinung. Die räumliche Verteilung des Lichts im atomaren Bereich spielt dabei keine Rolle. In den vergangenen Jahren wurden jedoch die experimentellen Methoden so weit verbessert, dass man auch einzelne Atome untersuchen kann. Auf welche Weise ein einzelnes Atom mit Licht in Wechselwirkung tritt, hängt von den Eigenschaften des Lichtfelds in seiner unmittelbaren Umgebung ab. Deshalb kann ein einzelnes Atom dazu benutzt werden, Informationen über die mikroskopische Struktur von Lichtfeldern mit bisher unerreichbarer Auflösung zu erhalten. Voraussetzung ist allerdings, dass man die Position des einzelnen Atoms genauestens kontrollieren kann. Schon eine Distanz von 100 Nanometern kann zwischen maximaler Lichtintensität und völliger Dunkelheit entscheiden. Doch wie kann man ein einzelnes Atom so genau festhalten, ohne dabei das Lichtfeld selbst zu stören?


Abb. 1: Die im Experiment verwendete Ionenfalle: Das Ion wird entlang der Fallenachse zwischen die Spiegel geschoben. Ein Laser erzeugt das Feld zwischen den Spiegeln, das Fluoreszenzlicht wird von der Seite beobachtet


Gerhard R. Guthöhrlein, Matthias Keller, Kazuhiro Hayasaka, Wolfgang Lange und Herbert Walther vom Max-Planck-Institut für Quantenoptik ist es gelungen, dieses Problem zu lösen. Sie verwendeten für ihr Experiment ein einzelnes ionisiertes Calcium-Atom, das im Radiofrequenzfeld einer Ionenfalle festgehalten wurde (Abb.1). Mit einem Laser kühlten sie das Ion auf eine Temperatur von weniger als ein Tausendstel Grad über dem absoluten Nullpunkt ab; seine Bewegung in der Falle ist dann auf einen Bereich von nur noch 60 Nanometer beschränkt. Dies ist ein Bruchteil der Wellenlänge der vom Calcium-Ion absorbierten ultravioletten Strahlung von 397 Nanometer, so dass sich auch Strukturen weit unterhalb dieser Skala optimal auflösen lassen.

Eine Radiofrequenzfalle hat den entscheidenden Vorteil, dass sie die Wechselwirkung zwischen Ion und Lichtfeld in keiner Weise stört. Das gefangene Ion wird darin zu einer perfekten Nanosonde, die nach dem Prinzip der Nahfeldmikroskopie arbeitet: Durch Absorption von Strahlung aus seiner unmittelbaren Umgebung nimmt das Ion Informationen über die lokale Lichtintensität auf. Über das anschließend vom Ion abgestrahlte Fluoreszenzlicht kann man diese Größe messen - mehr Fluoreszenzlicht bedeutet eine höhere Intensität des Strahlungsfelds. Die Max-Planck-Wissenschaftler haben die Messung an verschiedenen Stellen im Lichtfeld wiederholt, die so gewonnenen Intensitätswerte zu einem Bild zusammengesetzt und damit die Umgebung des Ions mit atomarer Auflösung sichtbar gemacht.

Im Experiment wurde ein Lichtfeld untersucht, das sich zwischen zwei hochreflektierenden, nur 6 Millimeter voneinander entfernten Miniaturspiegeln bei Einstrahlung von Laserlicht ausbildet (vgl. Abb. 1). Mit dem Calcium-Ion konnten die Forscher - wie mit einer Nanokamera - erstmals die charakteristische Intensitätsverteilung dieses stark lokalisierten Lichtfelds in allen drei Raumrichtungen direkt abbilden (Abb. 2). So gelang ihnen die bislang genaueste Messung eines Strahlungsfelds.


Abb. 2: Transversale Feldverteilung zwischen den Spiegeln, aufgenommen mit einem einzelnen Calcium-Ion. Je nach Spiegelabstand werden verschiedene Zustände (a, b) angeregt, die sich in der Zahl der Intensitätsmaxima unterscheiden. Die schwarzen Höhenlinien zeigen die theoretisch berechneten Werte


Das in einer Ionenfalle festgehaltene atomare Teilchen lässt sich jedoch nicht nur dazu einsetzen, die mikroskopische Struktur eines Lichtfelds aufzulösen. Vielmehr hat man umgekehrt auch die Möglichkeit, ein derart "fixiertes" Ion für praktisch unbegrenzte Zeit einem genau festgelegten Lichtfeld auszusetzen, was bei freien Atomen durch deren zufällige Bewegung verhindert würde. Damit lässt sich Licht mit Eigenschaften erzeugen, die über den Rahmen der klassischen Physik hinausgehen und mit den Begriffen der Quantenmechanik beschrieben werden müssen. "Wir könnten beispielsweise mit der im MPQ verwendeten Apparatur Pulse produzieren, die aus exakt einem Lichtquant bestehen. Das wäre eine hervorragende Grundlage für das abhörsichere Übertragen von Informationen," sagt Prof. Herbert Walther, der Leiter des Forscherteams und Direktor am Max-Planck-Institut für Quantenoptik. Und:."Der größte Nutzen könnte sich für die Entwicklung eines Quantencomputers auf atomarer Basis ergeben. Die präzise Steuerung der Wechselwirkung mit Licht ermöglicht einen einfachen Austausch von Quanteninformation zwischen den Ionen und ist den bisher vorgeschlagenen Methoden bei weitem überlegen."


Mit ihrer Ein-Ion-Nanosonde sind die Quantenphysiker in Garching einem universellen Schalter für die Quantenzustände von Atomen einen großen Schritt näher gekommen.


PDF-Version...


Weitere Informationen erhalten Sie von:

Prof. Dr. Herbert Walther
Max-Planck-Institut für Quantenoptik
85748 Garching
Tel.: 0 89 / 3 29 05 - 7 04
Fax: 0 89 / 3 29 05 - 3 14
E-Mail: herbert.walther@mpq.mpg.de

Dr. Wolfgang Lange
Max-Planck-Institut für Quantenoptik
85748 Garching
Tel.: 0 89 / 3 29 05 - 2 98
Fax: 0 89 / 3 29 05 - 2 00
E-Mail: wolfgang.lange@mpq.mpg.de

| Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de/mpq_d.html

Weitere Berichte zu: Atom Calcium-Ion Ionenfalle Lichtfeld Wechselwirkung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften