Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Rekord in der Optik - ein einzelnes Ion als Quantensonde

01.11.2001


Präzise Kontrolle der Wechselwirkung zwischen gespeichertem Ion und optischem Feld als Grundlage für Einphotonenpulse und Quantencomputer


Einer Forschergruppe am Max-Planck-Institut für Quantenoptik (MPQ) in Garching ist es mit Hilfe einer Ionenfalle gelungen, ein einzelnes Calcium-Ion präzise und dauerhaft in einem optischen Feld zu positionieren (nature, 1. November 2001). Mit bisher nicht erreichter Genauigkeit und störungsfrei bestimmten die Wissenschaftler um Prof. Herbert Walther so die räumliche Verteilung des Felds im Nanometerbereich. Mit der exakten Kontrolle der Wechselwirkung zwischen Atom und Strahlungsfeld wurde ein wichtiger wissenschaftlicher Durchbruch erzielt - nicht nur für die Präzisionsmessung optischer Felder, sondern auch für zukünftige Anwendungen. Diese reichen von der Erzeugung von Licht mit exotischen Quanteneigenschaften bis zum Bau effizienter Schaltelemente für einen Quantencomputer.

Die Wechselwirkung zwischen Licht und Materie ist von grundlegender Bedeutung für das Verständnis von Vorgängen im atomaren Bereich. In der makroskopischen Welt tritt nur die über eine große Anzahl von Atomen gemittelte Wirkung des Lichtfelds in Erscheinung. Die räumliche Verteilung des Lichts im atomaren Bereich spielt dabei keine Rolle. In den vergangenen Jahren wurden jedoch die experimentellen Methoden so weit verbessert, dass man auch einzelne Atome untersuchen kann. Auf welche Weise ein einzelnes Atom mit Licht in Wechselwirkung tritt, hängt von den Eigenschaften des Lichtfelds in seiner unmittelbaren Umgebung ab. Deshalb kann ein einzelnes Atom dazu benutzt werden, Informationen über die mikroskopische Struktur von Lichtfeldern mit bisher unerreichbarer Auflösung zu erhalten. Voraussetzung ist allerdings, dass man die Position des einzelnen Atoms genauestens kontrollieren kann. Schon eine Distanz von 100 Nanometern kann zwischen maximaler Lichtintensität und völliger Dunkelheit entscheiden. Doch wie kann man ein einzelnes Atom so genau festhalten, ohne dabei das Lichtfeld selbst zu stören?


Abb. 1: Die im Experiment verwendete Ionenfalle: Das Ion wird entlang der Fallenachse zwischen die Spiegel geschoben. Ein Laser erzeugt das Feld zwischen den Spiegeln, das Fluoreszenzlicht wird von der Seite beobachtet


Gerhard R. Guthöhrlein, Matthias Keller, Kazuhiro Hayasaka, Wolfgang Lange und Herbert Walther vom Max-Planck-Institut für Quantenoptik ist es gelungen, dieses Problem zu lösen. Sie verwendeten für ihr Experiment ein einzelnes ionisiertes Calcium-Atom, das im Radiofrequenzfeld einer Ionenfalle festgehalten wurde (Abb.1). Mit einem Laser kühlten sie das Ion auf eine Temperatur von weniger als ein Tausendstel Grad über dem absoluten Nullpunkt ab; seine Bewegung in der Falle ist dann auf einen Bereich von nur noch 60 Nanometer beschränkt. Dies ist ein Bruchteil der Wellenlänge der vom Calcium-Ion absorbierten ultravioletten Strahlung von 397 Nanometer, so dass sich auch Strukturen weit unterhalb dieser Skala optimal auflösen lassen.

Eine Radiofrequenzfalle hat den entscheidenden Vorteil, dass sie die Wechselwirkung zwischen Ion und Lichtfeld in keiner Weise stört. Das gefangene Ion wird darin zu einer perfekten Nanosonde, die nach dem Prinzip der Nahfeldmikroskopie arbeitet: Durch Absorption von Strahlung aus seiner unmittelbaren Umgebung nimmt das Ion Informationen über die lokale Lichtintensität auf. Über das anschließend vom Ion abgestrahlte Fluoreszenzlicht kann man diese Größe messen - mehr Fluoreszenzlicht bedeutet eine höhere Intensität des Strahlungsfelds. Die Max-Planck-Wissenschaftler haben die Messung an verschiedenen Stellen im Lichtfeld wiederholt, die so gewonnenen Intensitätswerte zu einem Bild zusammengesetzt und damit die Umgebung des Ions mit atomarer Auflösung sichtbar gemacht.

Im Experiment wurde ein Lichtfeld untersucht, das sich zwischen zwei hochreflektierenden, nur 6 Millimeter voneinander entfernten Miniaturspiegeln bei Einstrahlung von Laserlicht ausbildet (vgl. Abb. 1). Mit dem Calcium-Ion konnten die Forscher - wie mit einer Nanokamera - erstmals die charakteristische Intensitätsverteilung dieses stark lokalisierten Lichtfelds in allen drei Raumrichtungen direkt abbilden (Abb. 2). So gelang ihnen die bislang genaueste Messung eines Strahlungsfelds.


Abb. 2: Transversale Feldverteilung zwischen den Spiegeln, aufgenommen mit einem einzelnen Calcium-Ion. Je nach Spiegelabstand werden verschiedene Zustände (a, b) angeregt, die sich in der Zahl der Intensitätsmaxima unterscheiden. Die schwarzen Höhenlinien zeigen die theoretisch berechneten Werte


Das in einer Ionenfalle festgehaltene atomare Teilchen lässt sich jedoch nicht nur dazu einsetzen, die mikroskopische Struktur eines Lichtfelds aufzulösen. Vielmehr hat man umgekehrt auch die Möglichkeit, ein derart "fixiertes" Ion für praktisch unbegrenzte Zeit einem genau festgelegten Lichtfeld auszusetzen, was bei freien Atomen durch deren zufällige Bewegung verhindert würde. Damit lässt sich Licht mit Eigenschaften erzeugen, die über den Rahmen der klassischen Physik hinausgehen und mit den Begriffen der Quantenmechanik beschrieben werden müssen. "Wir könnten beispielsweise mit der im MPQ verwendeten Apparatur Pulse produzieren, die aus exakt einem Lichtquant bestehen. Das wäre eine hervorragende Grundlage für das abhörsichere Übertragen von Informationen," sagt Prof. Herbert Walther, der Leiter des Forscherteams und Direktor am Max-Planck-Institut für Quantenoptik. Und:."Der größte Nutzen könnte sich für die Entwicklung eines Quantencomputers auf atomarer Basis ergeben. Die präzise Steuerung der Wechselwirkung mit Licht ermöglicht einen einfachen Austausch von Quanteninformation zwischen den Ionen und ist den bisher vorgeschlagenen Methoden bei weitem überlegen."


Mit ihrer Ein-Ion-Nanosonde sind die Quantenphysiker in Garching einem universellen Schalter für die Quantenzustände von Atomen einen großen Schritt näher gekommen.


PDF-Version...


Weitere Informationen erhalten Sie von:

Prof. Dr. Herbert Walther
Max-Planck-Institut für Quantenoptik
85748 Garching
Tel.: 0 89 / 3 29 05 - 7 04
Fax: 0 89 / 3 29 05 - 3 14
E-Mail: herbert.walther@mpq.mpg.de

Dr. Wolfgang Lange
Max-Planck-Institut für Quantenoptik
85748 Garching
Tel.: 0 89 / 3 29 05 - 2 98
Fax: 0 89 / 3 29 05 - 2 00
E-Mail: wolfgang.lange@mpq.mpg.de

| Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de/mpq_d.html

Weitere Berichte zu: Atom Calcium-Ion Ionenfalle Lichtfeld Wechselwirkung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten