Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Rekord in der Optik - ein einzelnes Ion als Quantensonde

01.11.2001


Präzise Kontrolle der Wechselwirkung zwischen gespeichertem Ion und optischem Feld als Grundlage für Einphotonenpulse und Quantencomputer


Einer Forschergruppe am Max-Planck-Institut für Quantenoptik (MPQ) in Garching ist es mit Hilfe einer Ionenfalle gelungen, ein einzelnes Calcium-Ion präzise und dauerhaft in einem optischen Feld zu positionieren (nature, 1. November 2001). Mit bisher nicht erreichter Genauigkeit und störungsfrei bestimmten die Wissenschaftler um Prof. Herbert Walther so die räumliche Verteilung des Felds im Nanometerbereich. Mit der exakten Kontrolle der Wechselwirkung zwischen Atom und Strahlungsfeld wurde ein wichtiger wissenschaftlicher Durchbruch erzielt - nicht nur für die Präzisionsmessung optischer Felder, sondern auch für zukünftige Anwendungen. Diese reichen von der Erzeugung von Licht mit exotischen Quanteneigenschaften bis zum Bau effizienter Schaltelemente für einen Quantencomputer.

Die Wechselwirkung zwischen Licht und Materie ist von grundlegender Bedeutung für das Verständnis von Vorgängen im atomaren Bereich. In der makroskopischen Welt tritt nur die über eine große Anzahl von Atomen gemittelte Wirkung des Lichtfelds in Erscheinung. Die räumliche Verteilung des Lichts im atomaren Bereich spielt dabei keine Rolle. In den vergangenen Jahren wurden jedoch die experimentellen Methoden so weit verbessert, dass man auch einzelne Atome untersuchen kann. Auf welche Weise ein einzelnes Atom mit Licht in Wechselwirkung tritt, hängt von den Eigenschaften des Lichtfelds in seiner unmittelbaren Umgebung ab. Deshalb kann ein einzelnes Atom dazu benutzt werden, Informationen über die mikroskopische Struktur von Lichtfeldern mit bisher unerreichbarer Auflösung zu erhalten. Voraussetzung ist allerdings, dass man die Position des einzelnen Atoms genauestens kontrollieren kann. Schon eine Distanz von 100 Nanometern kann zwischen maximaler Lichtintensität und völliger Dunkelheit entscheiden. Doch wie kann man ein einzelnes Atom so genau festhalten, ohne dabei das Lichtfeld selbst zu stören?


Abb. 1: Die im Experiment verwendete Ionenfalle: Das Ion wird entlang der Fallenachse zwischen die Spiegel geschoben. Ein Laser erzeugt das Feld zwischen den Spiegeln, das Fluoreszenzlicht wird von der Seite beobachtet


Gerhard R. Guthöhrlein, Matthias Keller, Kazuhiro Hayasaka, Wolfgang Lange und Herbert Walther vom Max-Planck-Institut für Quantenoptik ist es gelungen, dieses Problem zu lösen. Sie verwendeten für ihr Experiment ein einzelnes ionisiertes Calcium-Atom, das im Radiofrequenzfeld einer Ionenfalle festgehalten wurde (Abb.1). Mit einem Laser kühlten sie das Ion auf eine Temperatur von weniger als ein Tausendstel Grad über dem absoluten Nullpunkt ab; seine Bewegung in der Falle ist dann auf einen Bereich von nur noch 60 Nanometer beschränkt. Dies ist ein Bruchteil der Wellenlänge der vom Calcium-Ion absorbierten ultravioletten Strahlung von 397 Nanometer, so dass sich auch Strukturen weit unterhalb dieser Skala optimal auflösen lassen.

Eine Radiofrequenzfalle hat den entscheidenden Vorteil, dass sie die Wechselwirkung zwischen Ion und Lichtfeld in keiner Weise stört. Das gefangene Ion wird darin zu einer perfekten Nanosonde, die nach dem Prinzip der Nahfeldmikroskopie arbeitet: Durch Absorption von Strahlung aus seiner unmittelbaren Umgebung nimmt das Ion Informationen über die lokale Lichtintensität auf. Über das anschließend vom Ion abgestrahlte Fluoreszenzlicht kann man diese Größe messen - mehr Fluoreszenzlicht bedeutet eine höhere Intensität des Strahlungsfelds. Die Max-Planck-Wissenschaftler haben die Messung an verschiedenen Stellen im Lichtfeld wiederholt, die so gewonnenen Intensitätswerte zu einem Bild zusammengesetzt und damit die Umgebung des Ions mit atomarer Auflösung sichtbar gemacht.

Im Experiment wurde ein Lichtfeld untersucht, das sich zwischen zwei hochreflektierenden, nur 6 Millimeter voneinander entfernten Miniaturspiegeln bei Einstrahlung von Laserlicht ausbildet (vgl. Abb. 1). Mit dem Calcium-Ion konnten die Forscher - wie mit einer Nanokamera - erstmals die charakteristische Intensitätsverteilung dieses stark lokalisierten Lichtfelds in allen drei Raumrichtungen direkt abbilden (Abb. 2). So gelang ihnen die bislang genaueste Messung eines Strahlungsfelds.


Abb. 2: Transversale Feldverteilung zwischen den Spiegeln, aufgenommen mit einem einzelnen Calcium-Ion. Je nach Spiegelabstand werden verschiedene Zustände (a, b) angeregt, die sich in der Zahl der Intensitätsmaxima unterscheiden. Die schwarzen Höhenlinien zeigen die theoretisch berechneten Werte


Das in einer Ionenfalle festgehaltene atomare Teilchen lässt sich jedoch nicht nur dazu einsetzen, die mikroskopische Struktur eines Lichtfelds aufzulösen. Vielmehr hat man umgekehrt auch die Möglichkeit, ein derart "fixiertes" Ion für praktisch unbegrenzte Zeit einem genau festgelegten Lichtfeld auszusetzen, was bei freien Atomen durch deren zufällige Bewegung verhindert würde. Damit lässt sich Licht mit Eigenschaften erzeugen, die über den Rahmen der klassischen Physik hinausgehen und mit den Begriffen der Quantenmechanik beschrieben werden müssen. "Wir könnten beispielsweise mit der im MPQ verwendeten Apparatur Pulse produzieren, die aus exakt einem Lichtquant bestehen. Das wäre eine hervorragende Grundlage für das abhörsichere Übertragen von Informationen," sagt Prof. Herbert Walther, der Leiter des Forscherteams und Direktor am Max-Planck-Institut für Quantenoptik. Und:."Der größte Nutzen könnte sich für die Entwicklung eines Quantencomputers auf atomarer Basis ergeben. Die präzise Steuerung der Wechselwirkung mit Licht ermöglicht einen einfachen Austausch von Quanteninformation zwischen den Ionen und ist den bisher vorgeschlagenen Methoden bei weitem überlegen."


Mit ihrer Ein-Ion-Nanosonde sind die Quantenphysiker in Garching einem universellen Schalter für die Quantenzustände von Atomen einen großen Schritt näher gekommen.


PDF-Version...


Weitere Informationen erhalten Sie von:

Prof. Dr. Herbert Walther
Max-Planck-Institut für Quantenoptik
85748 Garching
Tel.: 0 89 / 3 29 05 - 7 04
Fax: 0 89 / 3 29 05 - 3 14
E-Mail: herbert.walther@mpq.mpg.de

Dr. Wolfgang Lange
Max-Planck-Institut für Quantenoptik
85748 Garching
Tel.: 0 89 / 3 29 05 - 2 98
Fax: 0 89 / 3 29 05 - 2 00
E-Mail: wolfgang.lange@mpq.mpg.de

| Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de/mpq_d.html

Weitere Berichte zu: Atom Calcium-Ion Ionenfalle Lichtfeld Wechselwirkung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise