Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Rekord in der Optik - ein einzelnes Ion als Quantensonde

01.11.2001


Präzise Kontrolle der Wechselwirkung zwischen gespeichertem Ion und optischem Feld als Grundlage für Einphotonenpulse und Quantencomputer


Einer Forschergruppe am Max-Planck-Institut für Quantenoptik (MPQ) in Garching ist es mit Hilfe einer Ionenfalle gelungen, ein einzelnes Calcium-Ion präzise und dauerhaft in einem optischen Feld zu positionieren (nature, 1. November 2001). Mit bisher nicht erreichter Genauigkeit und störungsfrei bestimmten die Wissenschaftler um Prof. Herbert Walther so die räumliche Verteilung des Felds im Nanometerbereich. Mit der exakten Kontrolle der Wechselwirkung zwischen Atom und Strahlungsfeld wurde ein wichtiger wissenschaftlicher Durchbruch erzielt - nicht nur für die Präzisionsmessung optischer Felder, sondern auch für zukünftige Anwendungen. Diese reichen von der Erzeugung von Licht mit exotischen Quanteneigenschaften bis zum Bau effizienter Schaltelemente für einen Quantencomputer.

Die Wechselwirkung zwischen Licht und Materie ist von grundlegender Bedeutung für das Verständnis von Vorgängen im atomaren Bereich. In der makroskopischen Welt tritt nur die über eine große Anzahl von Atomen gemittelte Wirkung des Lichtfelds in Erscheinung. Die räumliche Verteilung des Lichts im atomaren Bereich spielt dabei keine Rolle. In den vergangenen Jahren wurden jedoch die experimentellen Methoden so weit verbessert, dass man auch einzelne Atome untersuchen kann. Auf welche Weise ein einzelnes Atom mit Licht in Wechselwirkung tritt, hängt von den Eigenschaften des Lichtfelds in seiner unmittelbaren Umgebung ab. Deshalb kann ein einzelnes Atom dazu benutzt werden, Informationen über die mikroskopische Struktur von Lichtfeldern mit bisher unerreichbarer Auflösung zu erhalten. Voraussetzung ist allerdings, dass man die Position des einzelnen Atoms genauestens kontrollieren kann. Schon eine Distanz von 100 Nanometern kann zwischen maximaler Lichtintensität und völliger Dunkelheit entscheiden. Doch wie kann man ein einzelnes Atom so genau festhalten, ohne dabei das Lichtfeld selbst zu stören?


Abb. 1: Die im Experiment verwendete Ionenfalle: Das Ion wird entlang der Fallenachse zwischen die Spiegel geschoben. Ein Laser erzeugt das Feld zwischen den Spiegeln, das Fluoreszenzlicht wird von der Seite beobachtet


Gerhard R. Guthöhrlein, Matthias Keller, Kazuhiro Hayasaka, Wolfgang Lange und Herbert Walther vom Max-Planck-Institut für Quantenoptik ist es gelungen, dieses Problem zu lösen. Sie verwendeten für ihr Experiment ein einzelnes ionisiertes Calcium-Atom, das im Radiofrequenzfeld einer Ionenfalle festgehalten wurde (Abb.1). Mit einem Laser kühlten sie das Ion auf eine Temperatur von weniger als ein Tausendstel Grad über dem absoluten Nullpunkt ab; seine Bewegung in der Falle ist dann auf einen Bereich von nur noch 60 Nanometer beschränkt. Dies ist ein Bruchteil der Wellenlänge der vom Calcium-Ion absorbierten ultravioletten Strahlung von 397 Nanometer, so dass sich auch Strukturen weit unterhalb dieser Skala optimal auflösen lassen.

Eine Radiofrequenzfalle hat den entscheidenden Vorteil, dass sie die Wechselwirkung zwischen Ion und Lichtfeld in keiner Weise stört. Das gefangene Ion wird darin zu einer perfekten Nanosonde, die nach dem Prinzip der Nahfeldmikroskopie arbeitet: Durch Absorption von Strahlung aus seiner unmittelbaren Umgebung nimmt das Ion Informationen über die lokale Lichtintensität auf. Über das anschließend vom Ion abgestrahlte Fluoreszenzlicht kann man diese Größe messen - mehr Fluoreszenzlicht bedeutet eine höhere Intensität des Strahlungsfelds. Die Max-Planck-Wissenschaftler haben die Messung an verschiedenen Stellen im Lichtfeld wiederholt, die so gewonnenen Intensitätswerte zu einem Bild zusammengesetzt und damit die Umgebung des Ions mit atomarer Auflösung sichtbar gemacht.

Im Experiment wurde ein Lichtfeld untersucht, das sich zwischen zwei hochreflektierenden, nur 6 Millimeter voneinander entfernten Miniaturspiegeln bei Einstrahlung von Laserlicht ausbildet (vgl. Abb. 1). Mit dem Calcium-Ion konnten die Forscher - wie mit einer Nanokamera - erstmals die charakteristische Intensitätsverteilung dieses stark lokalisierten Lichtfelds in allen drei Raumrichtungen direkt abbilden (Abb. 2). So gelang ihnen die bislang genaueste Messung eines Strahlungsfelds.


Abb. 2: Transversale Feldverteilung zwischen den Spiegeln, aufgenommen mit einem einzelnen Calcium-Ion. Je nach Spiegelabstand werden verschiedene Zustände (a, b) angeregt, die sich in der Zahl der Intensitätsmaxima unterscheiden. Die schwarzen Höhenlinien zeigen die theoretisch berechneten Werte


Das in einer Ionenfalle festgehaltene atomare Teilchen lässt sich jedoch nicht nur dazu einsetzen, die mikroskopische Struktur eines Lichtfelds aufzulösen. Vielmehr hat man umgekehrt auch die Möglichkeit, ein derart "fixiertes" Ion für praktisch unbegrenzte Zeit einem genau festgelegten Lichtfeld auszusetzen, was bei freien Atomen durch deren zufällige Bewegung verhindert würde. Damit lässt sich Licht mit Eigenschaften erzeugen, die über den Rahmen der klassischen Physik hinausgehen und mit den Begriffen der Quantenmechanik beschrieben werden müssen. "Wir könnten beispielsweise mit der im MPQ verwendeten Apparatur Pulse produzieren, die aus exakt einem Lichtquant bestehen. Das wäre eine hervorragende Grundlage für das abhörsichere Übertragen von Informationen," sagt Prof. Herbert Walther, der Leiter des Forscherteams und Direktor am Max-Planck-Institut für Quantenoptik. Und:."Der größte Nutzen könnte sich für die Entwicklung eines Quantencomputers auf atomarer Basis ergeben. Die präzise Steuerung der Wechselwirkung mit Licht ermöglicht einen einfachen Austausch von Quanteninformation zwischen den Ionen und ist den bisher vorgeschlagenen Methoden bei weitem überlegen."


Mit ihrer Ein-Ion-Nanosonde sind die Quantenphysiker in Garching einem universellen Schalter für die Quantenzustände von Atomen einen großen Schritt näher gekommen.


PDF-Version...


Weitere Informationen erhalten Sie von:

Prof. Dr. Herbert Walther
Max-Planck-Institut für Quantenoptik
85748 Garching
Tel.: 0 89 / 3 29 05 - 7 04
Fax: 0 89 / 3 29 05 - 3 14
E-Mail: herbert.walther@mpq.mpg.de

Dr. Wolfgang Lange
Max-Planck-Institut für Quantenoptik
85748 Garching
Tel.: 0 89 / 3 29 05 - 2 98
Fax: 0 89 / 3 29 05 - 2 00
E-Mail: wolfgang.lange@mpq.mpg.de

| Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de/mpq_d.html

Weitere Berichte zu: Atom Calcium-Ion Ionenfalle Lichtfeld Wechselwirkung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lasing am Limit
15.02.2018 | Technische Universität Berlin

nachricht Forschung für die LED-Tapete der Zukunft
15.02.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Das VLT der ESO arbeitet erstmals wie ein 16-Meter-Teleskop

Erstes Licht für das ESPRESSO-Instrument mit allen vier Hauptteleskopen

Das ESPRESSO-Instrument am Very Large Telescope der ESO in Chile hat zum ersten Mal das kombinierte Licht aller vier 8,2-Meter-Hauptteleskope nutzbar gemacht....

Im Focus: Neuer Quantenspeicher behält Information über Stunden

Information in einem Quantensystem abzuspeichern ist schwer, sie geht meist rasch verloren. An der TU Wien erzielte man nun ultralange Speicherzeiten mit winzigen Diamanten.

Mit Quantenteilchen kann man Information speichern und manipulieren – das ist die Basis für viele vielversprechende Technologien, vom hochsensiblen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Auf der grünen Welle in die Zukunft des Mobilfunks

16.02.2018 | Veranstaltungen

Smart City: Interdisziplinäre Konferenz zu Solarenergie und Architektur

15.02.2018 | Veranstaltungen

Forschung für fruchtbare Böden / BonaRes-Konferenz 2018 versammelt internationale Bodenforscher

15.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste integrierte Schaltkreise (IC) aus Plastik

17.02.2018 | Energie und Elektrotechnik

Stammbaum der Tagfalter erstmalig umfassend neu aufgestellt

16.02.2018 | Biowissenschaften Chemie

Neue Strategien zur Behandlung chronischer Nierenleiden kommen aus der Tierwelt

16.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics