Trennung chiraler Moleküle in Mikrofluiden

Die Dichte (grün) der rechtshändigen Partner ist in rechtshändigen Wirbeln (rote Pfeile) höher als in linkshändigen Wirbeln (blaue Pfeile).

Augsburger Physiker entwickeln ein neuartiges „Sortier-Szenario“: An den gesteuerten Verwirbelungen kleinster Flüssigkeitsmengen scheiden sich „Links- und Rechtshänder“.

Die Trennung bzw. Sortierung so genannter chiraler Moleküle gilt als eine herausragende Herausforderung in der Molkularbiologie. Wissenschaftler am Augsburger Lehrstuhl für Theoretische Physik I haben eine völlig neue Idee entwickelt, wie man dieses altbekannte und zentrale Problem der organischen Chemie mit einem neuartigen Szenario effizient lösen kann (M. Kostur et al., Physical Review Letters 96: Art. No. 0145502, 2006). Ihre Kollegen am Lehrstuhl für Experimentalphysik I (AG Wixforth) versuchen nun, diese Idee mit Hilfe von Mikrofluidik im „Lab-on-a-Chip“ umzusetzen.

Chiral nennt man Moleküle, die – wie die linke und die rechte Hand – genau spiegelverkehrt zueinander sind, deren Spiegelbilder sich also nicht durch Drehen mit dem jeweiligen Original zur Deckung bringen lassen. Nahezu alle Moleküle mit biologischer Relevanz – z. B. die DNA – weisen diese „Händigkeit“ oder Chiralität auf. Diese konstitutive Asymmetrie zwischen zwei – Enantinomere genannten – chiralen Partnern verursacht enorme Unterschiede bezüglich ihrer jeweiligen biologischen Eigenschaften und ihrer jeweiligen Funktionalität. So kann der Mensch zum Beispiel nur eine chirale Form von Zuckern oder Aminosäuren verdauen; der Geschmack und Geruch anderer chiraler Formen kann völlig unterschiedlich sein, oder der eine chirale Partner kann förderlich sein, der andere hingegen giftig.

Die Natur ist in der Lage, mit Enzymreaktionen eine ganz bestimmte chirale Substanz in Reinform zu synthetisieren. Mit chemischen in vitro-Reaktionen hingegen gelingt dies nicht: Hier ergeben sich Mischungen, die oft hälftig aus „linkshändigen“ und „rechtshändigen“ Molekülen bestehen. Die Trennung der links- von den rechtshändigen Enantinomeren erfordert dann einen komplizierten zweiten chemischen Schritt. „Diese Trennung chiraler Moleküle zählt zu den großen Herausforderungen in der Molekularbiologie, sie gehört gewissermaßen zum ’heiligen Gral’ der organischen Chemie“, erläutert Professor Hänggi.

Am Lehrstuhl für Theoretische Physik I haben nun Marcin Kostur, Michael Schindler, Peter Talkner und Peter Hänggi die Idee für ein völlig neuartiges „Sortier-Szenario“ entwickelt. Es basiert auf winzigen Unterschieden zwischen den Kräften, die chirale Partner in einem mikrofluiden Flussmuster erfahren. Die Schlüsselidee ist, dass bei einem entsprechend vorbereiteten mikrofluiden Fluss ein linkshändiger Partner sich in einem rechtshändigen Wirbel anders bewegt als in einem linkshändigen Wirbel. Die Effizienz der so bewirkten Trennung und damit der gewünschte Sortiereffekt lassen sich unter der Bedingung einer flächendeckenden und unregelmäßigen thermischen Zitterbewegung weiter erhöhen. Denn diese Zitterbewegung führt dazu, dass sich jede chirale Spezies vorzugsweise in ihrer eigenen stabilsten Zone anhäuft. Bei geeigneten Flussmustern sind diese speziellen Zonen örtlich sauber getrennt, so dass die verschiedenen chiralen Objekte, die sich dort aufhalten, leicht separiert und herausgefiltert werden können (siehe Abbildung).

Mikrofluide, in denen „Wirbel“ auf einem Chip mittels eines akustischen Windes angetrieben werden, sind Forschungsgegenstand am Augsburger Lehrstuhl für Experimentalphysik I (Prof. Dr. Achim Wixforth) und werden dort in Anwendungen überführt.

AUSFÜHRLICH:
M. Kostur et al., Chiral Separation in Microflows, Phys. Rev. Lett. 96: 014502 (1996) (http://link.aps.org/abstract/PRL/v96/e014502)

ANSPRECHPARTNER:
Prof. Dr. Peter Talkner
Lehrstuhl für Theoretische Physik I
86135 Augsburg
Telefon 0821/598-3233
Peter.Talkner@physik.uni-augsburg.de

Media Contact

Klaus P. Prem idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer