Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ungleiche Ladungsverteilung in Laser, Leuchtdiode und Co - Polymermoleküle machen sich in organischen Halbleitern "Stark"

11.01.2006


Gegenüber herkömmlichen Halbleitern wie Silizium oder Galliumarsenid haben konjugierte Kunststoff-Polymere den Vorteil, einfach hergestellt werden zu können. Sie lassen sich zudem zu großen, mechanisch biegsamen Bauelementen verarbeiten und bieten fast unendliche Möglichkeiten zur Entwicklung neuer funktioneller Materialien. Deshalb werden sie bereits in organischen Leuchtdioden (OLEDs) als Lichtquelle genutzt. Unbekannt war bisher, wie sich ein einzelnes Polymermolekül im elektrischen Feld, also unter Bedingungen wie sie in einem Bauelement herrschen, verhält. Ein Team unter Leitung von Professor Dr. Jochen Feldmann und Dr. John Lupton vom Lehrstuhl für Photonik und Optoelektronik des Departments für Physik der Ludwig-Maximilians-Universität München berichtet nun in der online-Ausgabe von Nature Materials von entsprechenden Experimenten. Die Forscher, die Mitglieder des Center for NanoScience (CeNS) sind, zeigten, dass einzelne Kunststoffmoleküle ihre Farbe unter Einfluss eines elektrischen Feldes ändern können. Dies lässt darauf schließen, dass die elektrische Ladung in jedem einzelnen Molekül entgegen der herrschenden Annahme sehr ungleichmäßig verteilt ist.


"Für uns war die Beobachtung des Feldeffektes sehr interessant, weil man über diese Reaktion mikroskopische Informationen über die Ladungsverteilung im Molekül erhalten kann", so Lupton. Diese Verteilung beeinflusst entscheidend den Stromfluss auf molekularer Ebene. Diese Ebene ist bei polymerischen Halbleitern aber gerade maßgebend, da gegenüber kristallinen Materialien wie Galliumarsenid und Silizium die halbleitenden Eigenschaften nicht von der Fernordnung des gesamten Festkörpers stammen, sondern von der Ordnung der Atome in den einzelnen Molekülen. "Deshalb führen wir die Untersuchungen auf der Ebene einzelner Moleküle durch, weil man nur vom Molekül ausgehend mehr über den Festkörper lernen kann", meint Florian Schindler, Erstautor der Studie. "Nebenbei ergeben sich aber auch bislang unerwartete Anwendungen der Moleküle als Schalter und Speicher im Nanobereich. Insgesamt ist unsere Entdeckung wichtig für Bauelemente wie Leuchtdioden, Bildschirme, Laser und Solarzellen."

Die Farbänderung von Molekülen im elektrischen Feld wird als Stark-Effekt bezeichnet. Ursprünglich beschreibt dieser Effekt spezifische Veränderungen der ausgestrahlten Spektrallinien von Atomen unter großen elektrischen Feldern. Benannt ist dieses Phänomen nach Johannes Stark, der unter anderem für diese Entdeckung im Jahr 1919 den Nobelpreis erhielt. "Es gibt einen linearen und einen quadratischen Stark-Effekt", so Lupton. "Vom Festkörper des Polymers kennt man nur den quadratischen, beim Einzelmolekül haben wir jetzt aber auch den linearen Effekt nachgewiesen. Das sagt uns, dass die Ladungsverteilung im Molekül ungleichmäßig, und damit das Molekül selbst polarisiert ist." An einem Ende des Moleküls sitzt somit also nun eine positive Ladung, am anderen Ende eine Negative - ein Dipol wird gebildet.


"Am besten kann man sich das vielleicht mit dem Bild eines Wasserschlauchs vorstellen, der eine Delle besitzt", meint Lupton. "Die Flussmenge des Wassers wird sich verändern, wenn man auf den Schlauch drückt. Sie wird sich vergrößern oder reduzieren, je nachdem, ob die Delle nach innen oder außen ragt. Die Flussänderung wiederum hängt von der mechanischen Kraft ab, die die Delle verformt. Bei einem Bündel von Schläuchen werden sich die Verformungen im Mittel aufheben, so dass die Flussmenge insgesamt nicht auf kleine Kräfte reagieren sollte, wenn diese auf alle Schläuche gleichzeitig wirken." Ähnliches läuft bei den Polymeren ab, in denen sich Elektronen wie das Wasser im Schlauch bewegen. Die Dellen entsprechen Regionen im Molekül mit aufgestauten Elektronen, die den freien Elektronenfluss behindern. "Ob eine Delle vorhanden ist, kann man nur wissen, wenn man auf das Molekül ’drückt’. Das bedeutet, dass man mit Hilfe eines elektrischen Feldes versucht, die Elektronen zu bewegen."

Normalerweise können sich Elektronen so frei bewegen wie Wasser in einem Schlauch ohne Dellen. Diese so genannte Polarisierbarkeit der Elektronen führt dazu, dass eingestrahltes Licht eine dynamische Polarisation erzeugt. Die eigentlich frei beweglichen Elektronen bewegen sich dann entsprechend der Lichtschwingung. Liegt dabei allerdings eine permanente Polarisation - also eine Delle - vor, so wird der Elektronenfluss behindert, was sich als Stark-Effekt äußert: Wird ein elektrisches Feld angelegt, ändert sich die Emissionsfarbe.

"Vergleichbar ist die Situation auf dem Polymer mit einem Kondensator. Das Molekül ist zwischen die negativ und positiv geladenen Kondensatorplatten gespannt, die ihrerseits ein elektrisches Dipol-Feld hervorrufen", erklärt Prof. Feldmann. Das extern angelegte elektrische Feld wirkt mit dem Kondensatorfeld zusammen und führt zu charakteristischen Veränderungen der Molekülfluoreszenz. "Wir konnten ganz grundsätzlich zeigen, dass auf jedem Polymermolekül ein permanenter Dipol sitzt", fasst Lupton zusammen. "Das erlaubt zum ersten Mal eine Aussage über die statische Ladungsverteilung in einem Halbleitermolekül, die eben nicht gleichmäßig und symmetrisch ist, sondern von einer fundamentalen Symmetriebrechung dominiert wird." Weil die Moleküle aufgrund des Dipols quasi geladen sind, herrschen vermutlich starke Abschirmungseffekte. "Das muss man berücksichtigen, wenn man sich jetzt ein neues Modell des Ladungstransportes überlegt", meint Lupton. "Die Frage ist, wie Ladungen in einem Bauelement eigentlich von einem Molekül zum anderen kommen."

Die Leuchtfähigkeit der Polymere im Bauelement beruht auf dem Prinzip der Elektrolumineszenz. Die Bauelemente sind aus extrem dünnen Schichten aufgebaut. Eine davon, die Kathode, injiziert Elektronen. Eine andere, die Anode, entfernt Elektronen, so dass Löcher oder "leere Zustände" entstehen, in die Elektronen fallen können. Elektronen und Löcher können sich frei bewegen und treffen zwischen Kathode und Anode zusammen. Dort befindet sich eine dünne Schicht aus dem organischen Halbleiter. Elektronen und Löcher kombinieren, wenn sie aufeinandertreffen, und bilden ein so genanntes Exziton. Dabei wird in der Halbleiterschicht Energie in Form eines Photons frei: Licht wird emittiert.

Es ist davon auszugehen, dass Abschirmungseffekte auch die Wirkungsweise von Polymertransistoren beeinflussen, bei denen es gerade um die elektrostatische Erzeugung einer Polarisation geht. Solche Plastiktransistoren werden in billigen intelligenten Etiketten eingesetzt. In Bezug auf Anwendungen stellt der Einfluss elektrischer Felder auf Moleküle aber auch eine Möglichkeit des elektrooptischen Schaltens dar. So lässt sich sowohl die Fluoreszenzwellenlänge, also die Farbe, als auch die Fluoreszenzintensität auf diesem Weg regulieren. Manche Moleküle haben auch eine Art Gedächtnis und lassen sich als Speicherbausteine einsetzen. "Schließlich kann der Dipol auch für Solarzellen von Bedeutung sein", so Lupton. "Die Absorption von Photonen ist bei diesen Bauelementen zwar sehr stark, allerdings ist auch die elektrostatische Bindung von Elektron an Loch so groß, dass das Paar nur schwer getrennt werden kann. Vermutlich wird die Ladungstrennung, die für den Betrieb der Solarzelle nötig ist, durch die Anwesenheit von Dipolen dramatisch verstärkt."

Originalpublikation:
F. Schindler, J. M. Lupton, J. Müller, J. Feldmann, and U. Scherf
"How single conjugated polymer molecules respond to electric fields"
jetzt online, in print voraussichtlich in der Februar-Ausgabe von Nature Materials DoI:10.1038/nmat1549 (2006)

Ansprechpartner:

Dr. John Lupton
Department für Physik und Center for NanoScience
Tel.: +49 89 2180-3356
Fax: +49 89 2180-3318
E-Mail: John.Lupton@Physik.Uni-Muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/
http://www.phog.physik.uni-muenchen.de/
http://www.cens.de

Weitere Berichte zu: Elektron Ladungsverteilung Leuchtdiode Molekül Polymermolekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise