Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RUB-Physiker beweisen Magnetschalter für die Supraleitung

21.12.2005


Ein Schalter für die Supraleitung


Sandwich mit ultradünnen magnetischen Schichten
RUB-Physiker in Physical Review Letters



Ein supraleitendes Material, das wie ein Sandwich von magnetischen Schichten umschlossen ist, lässt sich mit der Magnetorientierung schalten: Die Temperatur, ab der es supraleitend wird, ändert sich mit der Orientierung der beiden Magnetschichten. Diese Tatsache, die schon 1999 von Prof. Dr. Lenar Tagirov am Lehrstuhl für theoretische Festkörperphysik (Prof. Dr. Konstantin B. Efetov) theoretisch vorhergesagt wurde, konnten Physiker der RUB um Prof. Dr. Kurt Westerholt (Lehrstuhl für Experimentalphysik, insbesondere Festkörperphysik, Prof. Dr. Dr. h.c. Hartmut Zabel) mittels detaillierter Experimente erstmals nachweisen. Bei antiparalleler Orientierung der Magnetisierung ist die Sprungtemperatur hoch; sie fällt bei paralleler Orientierung. Ihre Ergebnisse haben die Forscher in der renommierten Zeitschrift "The Physical Review Letters" der American Physical Society veröffentlicht.

Supraleitung und Magnetismus

Supraleitende Materialien verlieren unterhalb einer bestimmten Temperatur sprunghaft ihren elektrischen Widerstand und heben magnetische Felder auf. Die Temperatur, ab der dieser Effekt eintritt, wird Sprungtemperatur genannt. Supraleitung und Magnetismus sind gegensätzliche Eigenschaften von Metallen: Entweder zeigen sie supraleitende oder magnetische Eigenschaften, keinesfalls aber beide gleichzeitig. Mit modernen Aufdampfverfahren kann man allerdings beide Metallarten in direkten Kontakt bringen und so zum Beispiel eine Sandwich-Struktur aus Ferromagnet-Supraleiter-Ferromagnet herstellen, die etwa für den Quantencomputer wichtig sein kann. Die beiden Schichten befinden sich dann in Konkurrenz: Die magnetische Schicht versucht die Supraleitung zu unterdrücken. Ist die magnetische Schicht mehr als einen Nanometer dick, "gewinnt" sie. Bei einer magnetischen Schichtdicke von weniger als einem Nanometer wird die Supraleitung noch nicht vollständig unterdrückt. "Aber die Sprungtemperatur hängt von der Orientierung der Magnetisierung ab", erklärt Prof. Westerholt: "Sind beide Schichten gleichgerichtet, d.h. in beiden Schichten zeigen Nord- und Südpol in die gleiche Richtung, dann ist die Sprungtemperatur kleiner als bei antiparalleler Stellung, d.h. wenn Nord- und Südpol in den beiden Schichten entgegen gesetzt ausgerichtet sind."

Neuer supraleitender Schalter

Theoretische Vorhersagen besagten also, dass wenn es gelänge, von der parallelen zur antiparallelen Orientierung der Magnetisierung umzuschalten, die Sprungtemperatur des Supraleiters empfindlich darauf reagieren müsste. Diesen Effekt konnten die Forscher jetzt erstmals mit einer supraleitenden Vanadiumschicht zwischen zwei atomaren Eisenschichten experimentell überprüfen: Die Sprungtemperatur veränderte sich beim Umschalten der magnetischen Orientierung um acht Prozent. "Das ist zwar noch klein für technische Anwendungen, aber durch weitere Optimierung der Schichtdicken, der Grenzflächen zwischen Supraleiter und Ferromagnet und der Wahl der Materialen ist eine Steigerung des Effekts in Zukunft zu erwarten", meint Prof. Westerholt.

Theorie und Kollaboration

Der Einfluss von Ferromagneten auf die Supraleitung wird am Lehrstuhl für Experimentalphysik seit vielen Jahren untersucht. Dazu dienen hoch präzise Herstellungsmethoden der Schichtsysteme auf der Nanoskala. Aus der Kollaboration mit dem RAS Physico-Technical Institut in Kazan (Russland) ist die Idee entwachsen, supraleitende Schalter zu bauen. Prof. Tagirov von der Kazan State University hat dafür die theoretischen Grundlagen gelegt. "Die Realisierung ist äußerst aufwendig", beschreibt Prof. Zabel. "Die besondere Herausforderung liegt in der Herstellung von Grenzflächen zwischen Supraleitern und Ferromagneten, die auf eine atomare Monolage präzise ist." Diese Herausforderung wurde schließlich zusammen mit einer Forschergruppe in Uppsala (Schweden) unter der Leitung von Prof. B. Hjövarsson gemeistert. Die Arbeit wurde durch den Sonderforschungsbereich 491 "Magnetische Heteroschichten: Struktur und elektronischer Transport" der Deutschen Forschungsgemeinschaft gefördert.

Titelaufnahme

K. Westerholt, D. Sprungmann, H. Zabel, R. Brucas and B. Hjörvarsson, D. A. Tikhonov, I. A. Garifullin, PHYSICAL REVIEW LETTERS 95 (2005) 097003, http://link.aps.org/abstract/PRL/v95/e097003

Weitere Informationen

Prof. Dr. Kurt Westerholt, Institut für Experimentalphysik der Ruhr-Universität Bochum, 44780 Bochum, NB 4/168, Tel. 0234/32-23621 bzw. -23649, E-Mail: kurt.westerholt@rub.de bzw. hartmut.zabel@rub.de

Dr. Josef König | idw
Weitere Informationen:
http://link.aps.org/abstract/PRL/v95/e097003
http://www.ep4.rub.de

Weitere Berichte zu: Sprungtemperatur Supraleitung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Warum der Brennstoffzelle die Luft wegbleibt

28.03.2017 | Biowissenschaften Chemie

Chlamydien: Wie Bakterien das Ruder übernehmen

28.03.2017 | Biowissenschaften Chemie

Sterngeburt in den Winden supermassereicher Schwarzer Löcher

28.03.2017 | Physik Astronomie