Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RUB-Chemiker fangen NO-Molekül im Nanotröpfchen

18.11.2005


Im Nanotröpfchen ist das NO-Molekül wie in einem winzigen Labor eingefangen.


o Radikal trifft Quantenflüssigkeit: Eine unterkühlte Begegnung
o NO im Heliumnanotröpfchen beobachtet


o RUB-Chemiker berichten in Physical Review Letters


In einem fünf Nanometer kleinen Ball aus supraflüssigem Helium haben Bochumer Chemiker um Prof. Dr. Martina Havenith-Newen (Lehrstuhl für physikalische Chemie II) bei -272,78°C - nur 0,37°C über dem absoluten Nullpunkt - ein Stickstoffoxid(NO)-Molekül eingefangen. Mittels eines hochauflösenden Infrarotlasers, der einen charakteristischen chemischen Fingerabdruck liefert, konnten die Forscher erstmals Informationen über die Wechselwirkung zwischen dem NO-Molekül und seiner Umgebung herausfinden. Über ihre Ergebnisse berichten sie in der aktuellen Ausgabe von "Physical Review Letters".


Nanotröpfchen beeinflusst Einzelelektron fast nicht

Das sog. Heliumnanotröpfchen besitzt bei ultrakalten Temperaturen seltsame Eigenschaften: Es ist supraflüssig, d.h. es hat keine Reibung. "Ein Molekül kann daher reibungslos in dem Heliumnanotröpfchen rotieren", erklärt Prof. Havenith-Newen, "und das konnten wir beim NO direkt beobachten." Während in normalen Molekülen nur gepaarte Elektronen auftreten, handelt es sich beim NO um ein "Radikal": Es hat ein einzelnes ungepaartes Elektron, was typisch ist für besonders reaktive Moleküle. Erstmals konnten die Chemiker detailliert untersuchen, wie das Heliumnanotröpfchen die Elektronen beeinflusst - nämlich fast gar nicht: Der infrarote Fingerabdruck des NO im Heliumnanotröpfchen ist fast identisch mit dem Fingerabdruck des NO Moleküls im Vakuum.

Nanolabor für die Zukunft

Damit eröffnen sich neue Möglichkeiten für die Zukunft: "Supraflüssige Heliumnanotröpfchen sind Erfolg versprechende Nanolaboratorien, womit man chemische Reaktionen bei ultrakalten Temperaturen untersuchen kann", so Prof. Havenith-Newen. Außerdem zeigte das Infrarotspektrum die seltsame Quantennatur des supraflüssigen Heliumnanotröpfchens.

Titelaufnahme

K. von Haeften, A. Metzelthin, S. Rudolph, V. Staemmler, M. Havenith, et al.: High-resolution spectroscopy of NO in helium droplets: A prototype for open shell molecular interactions in a quantum solvent. In: Physical Review Letter, Vol. 95, doi: 10.1103/PhysRevLett.95.215301

Weitere Informationen

Prof. Dr. Martina Havenith-Newen, Lehrstuhl für physikalische Chemie II, NC 7/72, Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-24249, Fax: 0234/32-14183, E-Mail: martina.havenith@rub.de

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Berichte zu: Elektron Heliumnanotröpfchen NO-Molekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

nachricht Laser-Metronom ermöglicht Rekord-Synchronisation
12.01.2017 | Deutsches Elektronen-Synchrotron DESY

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungsnachrichten

Wie das Wissen in der Technik entsteht

17.01.2017 | Förderungen Preise

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik