Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Schuss, viele Treffer

02.03.2005


Da steckt Einstein drin: Ultrakurze Laserpulse beschleunigen Elektronen auf Lichtgeschwindigkeit und erzeugen so einen Protonenstrahl


Die silbern glänzende Anlage wirkt wie ein kleines Kraftwerk oder eine Chemiefabrik. Tonnenförmige Metallbehälter mit dick verglasten Bullaugen und wuchtigen Schraubenmuttern stehen herum, Stahlrohre, dick wie ein Oberschenkel, führen hinein, Ketten mit großen Karabinerhaken hängen von der Decke. Das Laserlabor im Max-Born-Institut ist ein beeindruckender Anblick. Ebenso beeindruckend sind die Leistungsdaten der großen Laser. Zurzeit erzeugen die Wissenschaftler in dem Höchstleistungs-Laserlabor des MBI kurzfristig Lichtleistungen von vielen Milliarden Kilowatt. Zum Vergleich: Das Blitzlicht eines Fotoapparats setzt kurzfristig tausend Watt frei, also ein Kilowatt (anders ausgedrückt: etwas über 1 PS reine Lichtleistung). Ein Kilogramm Sprengstoff (TNT) liegt bei einer Million Watt, das ist ein Megawatt. Ein Blitz bei einem Gewitter kommt mit Licht, Donner und Luftdruck immerhin schon auf tausend Milliarden Watt (10 hoch 12 oder ein Terawatt). Der Hochleistungslaser am MBI schafft derzeit deutlich über 25 Terawatt reine Lichtleistung, 100 Terawatt sind demnächst vorgesehen. Damit gehört dieses Lasersystem zu den leistungsstärksten Labor-Lasern, die in verschiedenen Instituten weltweit im Betrieb sind.

Ihre eigentliche Kraft entfalten diese Lichtpulse, wenn man sie auf einen winzigen Brennfleck fokussiert. Dabei wird eine immense Leistungsdichte von "zehn hoch neunzehn" Watt pro Quadratzentimeter frei, allerdings nur für sehr kurze Zeit und auf einer Fläche von wenigen Tausendstel Quadratmillimetern. 35 Femtosekunden dauert ein Laserpuls, zehn mal pro Sekunde wird gefeuert. Eine Femtosekunde ist der milliardste Teil einer Millionstelsekunde. Der Puls trifft in der luftleer gepumpten großen Tonne auf ein Ziel ("Target") und setzt damit eine ganze Kaskade von Reaktionen in Gang.


Das intensive Laserlicht erhitzt die Folie und erzeugt auf ihrer Oberfläche ein Plasma. Darin werden Elektronen auf nahezu Lichtgeschwindigkeit beschleunigt. Sie rasen durch die einige Mikrometer dünne Metallfolie und auf der Rückseite aus ihr heraus. Hinter der Folie sammeln sich die Elektronen sozusagen, es entsteht ein negativ geladenes elektrostatisches Feld. Es existiert zehn- bis zwanzigmal länger als der Puls und ist so stark, dass aus der Folienrückseite schwere Atomteilchen, nämlich Protonen herausgerissen werden. So entsteht ein Protonenstrahl. Den könnte man nun messen, aber damit begnügen sich die Forscher am MBI nicht. Der Gastwissenschaftler Jörg Schreiber von der Ludwig-Maximilians-Universität München erläutert: "In zukünftigen Experimenten wird mit einem zweiten Laserstrahl ein zweites Plasma erzeugt, durch das die Protonen fliegen." Aus der Ablenkung der Teilchen können die Wissenschaftler in der Projektgruppe um Dr. Matthias Schnürer dann viele Rückschlüsse über die Vorgänge in den Plasmen ziehen. Schreiber: "Das Elegante dabei ist, dass wir mit einem Schuss viele Ergebnisse erzielen."

Die Erzeugung von zwei Plasmen mithilfe zweier verschiedener Höchstleistungslaser, die innerhalb von Bruchteilen von milliardstel Sekunden synchronisiert feuern, ist eine Spezialität des MBI. Sie ist einmalig in Deutschland und Europa und macht das MBI zu einem begehrten Kooperationspartner für solche Experimente. So sind die Versuche, die Jörg Schreiber und seine Kollegen machen, eingebettet in einen neuen Sonderforschungsbereich/Transregio. Seine Besonderheit ist, dass er über drei Universitäten (Düsseldorf, München, Jena) und zwei außeruniversitäre Institute (Max-Planck-Institut für Quantenoptik, Garching, und Max-Born-Institut, Berlin) verteilt ist. Sprecher ist Professor Dr. Oswald Willi von der Heinrich-Heine-Universität Düsseldorf.

Bleibt die Frage nach dem Nutzen: "Wichtige Fragen für uns sind: Wie wird Energie in solch relativistischen Plasmen transportiert? Wie funktioniert überhaupt so ein Plasma?", antwortet Matthias Schnürer. Neben solch grundlegenden Fragen gibt es auch anwendungsnahe Aspekte. Denn der erzeugte Protonenpuls kann zur Strukturuntersuchung von normaler Materie - Festkörper oder gar biologische Moleküle - genutzt werden. Zwar ist seine Pulsdauer weit kürzer als die Pulsdauer von Protonenstrahlen aus großen Teilchenbeschleunigern und Forschungsreaktoren, doch dafür ist der Strahl viel dichter. Außerdem braucht man keine dieser Megamaschinen, um den Protonenstrahl zu erzeugen. Die Laseranlage im MBI ist zwar beeindruckend groß, doch die kurzen Lichtpulse lassen sich im Prinzip auf zwei großen Labortischen erzeugen, wenn man einen speziellen Laser daraufhin optimieren würde. So könnte es bei fortschreitender Miniaturisierung analog zum "Tisch-Computer" demnächst auch einen "Tisch-Beschleuniger" geben.

Und was hat das mit Einstein zu tun? "Unser Laserlicht ist so stark, dass Elektronen in diesem Feld selbst bis auf Lichtgeschwindigkeit beschleunigt werden", sagt Schnürer, "und das, obwohl sie in einer Millionstel Sekunde hundert Millionen mal ihre Bewegungsrichtung umkehren, eine schwindelerregende Karussellfahrt. Eine solche Bewegung und ihre physikalischen Konsequenzen können nur noch mit Einsteins Relativitätstheorie beschrieben werden." Daher heißt der Sonderforschungsbereich auch "Relativistische Laser-Plasma-Dynamik".

Josef Zens | idw
Weitere Informationen:
http://www.fv-berlin.de

Weitere Berichte zu: Elektron Lichtgeschwindigkeit MBI Plasma Protonenstrahl Terawatt

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie