Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Schuss, viele Treffer

02.03.2005


Da steckt Einstein drin: Ultrakurze Laserpulse beschleunigen Elektronen auf Lichtgeschwindigkeit und erzeugen so einen Protonenstrahl


Die silbern glänzende Anlage wirkt wie ein kleines Kraftwerk oder eine Chemiefabrik. Tonnenförmige Metallbehälter mit dick verglasten Bullaugen und wuchtigen Schraubenmuttern stehen herum, Stahlrohre, dick wie ein Oberschenkel, führen hinein, Ketten mit großen Karabinerhaken hängen von der Decke. Das Laserlabor im Max-Born-Institut ist ein beeindruckender Anblick. Ebenso beeindruckend sind die Leistungsdaten der großen Laser. Zurzeit erzeugen die Wissenschaftler in dem Höchstleistungs-Laserlabor des MBI kurzfristig Lichtleistungen von vielen Milliarden Kilowatt. Zum Vergleich: Das Blitzlicht eines Fotoapparats setzt kurzfristig tausend Watt frei, also ein Kilowatt (anders ausgedrückt: etwas über 1 PS reine Lichtleistung). Ein Kilogramm Sprengstoff (TNT) liegt bei einer Million Watt, das ist ein Megawatt. Ein Blitz bei einem Gewitter kommt mit Licht, Donner und Luftdruck immerhin schon auf tausend Milliarden Watt (10 hoch 12 oder ein Terawatt). Der Hochleistungslaser am MBI schafft derzeit deutlich über 25 Terawatt reine Lichtleistung, 100 Terawatt sind demnächst vorgesehen. Damit gehört dieses Lasersystem zu den leistungsstärksten Labor-Lasern, die in verschiedenen Instituten weltweit im Betrieb sind.

Ihre eigentliche Kraft entfalten diese Lichtpulse, wenn man sie auf einen winzigen Brennfleck fokussiert. Dabei wird eine immense Leistungsdichte von "zehn hoch neunzehn" Watt pro Quadratzentimeter frei, allerdings nur für sehr kurze Zeit und auf einer Fläche von wenigen Tausendstel Quadratmillimetern. 35 Femtosekunden dauert ein Laserpuls, zehn mal pro Sekunde wird gefeuert. Eine Femtosekunde ist der milliardste Teil einer Millionstelsekunde. Der Puls trifft in der luftleer gepumpten großen Tonne auf ein Ziel ("Target") und setzt damit eine ganze Kaskade von Reaktionen in Gang.


Das intensive Laserlicht erhitzt die Folie und erzeugt auf ihrer Oberfläche ein Plasma. Darin werden Elektronen auf nahezu Lichtgeschwindigkeit beschleunigt. Sie rasen durch die einige Mikrometer dünne Metallfolie und auf der Rückseite aus ihr heraus. Hinter der Folie sammeln sich die Elektronen sozusagen, es entsteht ein negativ geladenes elektrostatisches Feld. Es existiert zehn- bis zwanzigmal länger als der Puls und ist so stark, dass aus der Folienrückseite schwere Atomteilchen, nämlich Protonen herausgerissen werden. So entsteht ein Protonenstrahl. Den könnte man nun messen, aber damit begnügen sich die Forscher am MBI nicht. Der Gastwissenschaftler Jörg Schreiber von der Ludwig-Maximilians-Universität München erläutert: "In zukünftigen Experimenten wird mit einem zweiten Laserstrahl ein zweites Plasma erzeugt, durch das die Protonen fliegen." Aus der Ablenkung der Teilchen können die Wissenschaftler in der Projektgruppe um Dr. Matthias Schnürer dann viele Rückschlüsse über die Vorgänge in den Plasmen ziehen. Schreiber: "Das Elegante dabei ist, dass wir mit einem Schuss viele Ergebnisse erzielen."

Die Erzeugung von zwei Plasmen mithilfe zweier verschiedener Höchstleistungslaser, die innerhalb von Bruchteilen von milliardstel Sekunden synchronisiert feuern, ist eine Spezialität des MBI. Sie ist einmalig in Deutschland und Europa und macht das MBI zu einem begehrten Kooperationspartner für solche Experimente. So sind die Versuche, die Jörg Schreiber und seine Kollegen machen, eingebettet in einen neuen Sonderforschungsbereich/Transregio. Seine Besonderheit ist, dass er über drei Universitäten (Düsseldorf, München, Jena) und zwei außeruniversitäre Institute (Max-Planck-Institut für Quantenoptik, Garching, und Max-Born-Institut, Berlin) verteilt ist. Sprecher ist Professor Dr. Oswald Willi von der Heinrich-Heine-Universität Düsseldorf.

Bleibt die Frage nach dem Nutzen: "Wichtige Fragen für uns sind: Wie wird Energie in solch relativistischen Plasmen transportiert? Wie funktioniert überhaupt so ein Plasma?", antwortet Matthias Schnürer. Neben solch grundlegenden Fragen gibt es auch anwendungsnahe Aspekte. Denn der erzeugte Protonenpuls kann zur Strukturuntersuchung von normaler Materie - Festkörper oder gar biologische Moleküle - genutzt werden. Zwar ist seine Pulsdauer weit kürzer als die Pulsdauer von Protonenstrahlen aus großen Teilchenbeschleunigern und Forschungsreaktoren, doch dafür ist der Strahl viel dichter. Außerdem braucht man keine dieser Megamaschinen, um den Protonenstrahl zu erzeugen. Die Laseranlage im MBI ist zwar beeindruckend groß, doch die kurzen Lichtpulse lassen sich im Prinzip auf zwei großen Labortischen erzeugen, wenn man einen speziellen Laser daraufhin optimieren würde. So könnte es bei fortschreitender Miniaturisierung analog zum "Tisch-Computer" demnächst auch einen "Tisch-Beschleuniger" geben.

Und was hat das mit Einstein zu tun? "Unser Laserlicht ist so stark, dass Elektronen in diesem Feld selbst bis auf Lichtgeschwindigkeit beschleunigt werden", sagt Schnürer, "und das, obwohl sie in einer Millionstel Sekunde hundert Millionen mal ihre Bewegungsrichtung umkehren, eine schwindelerregende Karussellfahrt. Eine solche Bewegung und ihre physikalischen Konsequenzen können nur noch mit Einsteins Relativitätstheorie beschrieben werden." Daher heißt der Sonderforschungsbereich auch "Relativistische Laser-Plasma-Dynamik".

Josef Zens | idw
Weitere Informationen:
http://www.fv-berlin.de

Weitere Berichte zu: Elektron Lichtgeschwindigkeit MBI Plasma Protonenstrahl Terawatt

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
13.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften