Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Europaweites Projekt zur Entwicklung moderner Freie-Elektronen-Laser

18.01.2005


BESSY koordiniert Forschung an supraleitenden Beschleunigereinheiten


Der bei BESSY aufgebaute Teststand HoBiCaT, in dem u.a. untersucht wird, wie sich die bei DESY entwickelten supraleitenden TESLA-Cavities bei ihrer Betriebstemperatur von -271°C verhalten. Diese Cavities (Hohlraumresonatoren) sind wichtige Elemente moderner FEL. © BESSY / Schurian



Die Europäische Kommission fördert mit neun Millionen Euro unter dem Titel "EUROFEL" Voruntersuchungen zum Bau von Freie-Elektronen-Lasern. Das Projekt startet derzeit unter der Beteiligung von 16 führenden Forschungseinrichtungen aus Deutschland, Frankreich, Großbritannien, Italien und Schweden. Die Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung (BESSY) koordiniert eines von sechs Teilprojekten, in dem es um Untersuchungen an supraleitenden Beschleunigereinheiten geht. Das Fördervolumen dafür beträgt 1,3 Millionen Euro. Die Gesamtkoordination von "EUROFEL" liegt bei DESY in Hamburg.



In fünf europäischen Ländern wird derzeit der Bau von Freie-Elektronen-Lasern (FEL) geplant, um Europa weiterhin eine führende Position in naturwissenschaftlicher Forschung und Entwicklung zu sichern. Diese komplexen Anlagen werden ultrakurze Lichtpulse im UV- und Röntgenbereich mit laserähnlichen Eigenschaften erzeugen und sind unverzichtbar für die Aufklärung grundlegender Prozesse in Physik, Chemie und Biologie.

Die neusten Designkonzepte für besonders effiziente und vielseitige FEL erfordern allerdings noch theoretische und experimentelle Studien, in denen die benötigten Komponenten optimiert und getestet und die erforderlichen Prozesse aufeinander abgestimmt werden müssen. Um diese Voruntersuchungen geht es bei "EUROFEL".

Grob vereinfacht wird bei einem FEL zunächst ein Elektronenstrahl in einem Linearbeschleuniger auf nahezu Lichtgeschwindigkeit gebracht und durchläuft dann einen Undulator. Undulatoren bestehen aus einer Abfolge von Dipolmagneten, die ein alternierendes Magnetfeld erzeugen, das die Elektronen auf eine wellenförmige Bahn zwingt. Dabei strahlen sie Licht ab. Bei der richtigen Wahl aller Parameter werden die Elektronen veranlasst, im "Gleichtakt" - d.h. kohärent - Licht extrem hoher Intensität in einem sehr schmalen Wellenband auszusenden. Um diesen Prozess genau regeln zu können, wird parallel zu den Elektronen ein nur wenige Femtosekunden langer Laserpuls eingestrahlt (eine Femtosekunde ist der millionste Teil einer Milliardstel Sekunde).
Im Einzelnen werden an jede Komponente des FEL - angefangen von der Einheit, die den Elektronenstrahl erzeugt, bis hin zu der Synchronisation aller Systeme mit einer Genauigkeit von 100 Femtosekunden - extreme Anforderungen gestellt. In dem von BESSY geleiteten Teilprojekt geht es vor allem um die Optimierung der supraleitenden Hohlraumresonatoren, (wie der TESLA Cavities) in denen die Elektronen erzeugt bzw. beschleunigt werden. Diese Cavities sind röhrenförmige Strukturen aus dem supraleitenden Metall Niob. Damit die Elektronen nahezu Lichtgeschwindigkeit erreichen, müssen sie zahlreiche hintereinander gekoppelte Hohlraumresonatoren durchlaufen, in die über Mikrowellensender ein hochfrequentes Wechselfeld eingespeist wird. Um die für die Beschleunigung erforderlichen Felder zu erzeugen, ist normalerweise eine Leistung von vielen Kilowatt nötig. Gekühlt mit flüssigem Helium sinkt die Temperatur der Cavities aber auf dicht über den absoluten Nullpunkt, wo sie supraleitend werden und die benötigte Leistung sich um Größenordnungen reduziert. Untersucht werden in dem Teilprojekt z.B. wie die Felder in den Hohlraumresonatoren genau eingestellt werden können oder Fragen, die die Kopplung zwischen den Sendern und den Cavities betreffen.

Als einer von sieben Einrichtungen in Europa, die den Bau eines FEL planen, kommen BESSY die Ergebnisse aus "EUROFEL" direkt selbst zugute. Der von BESSY konzipierte Freie-Elektronen-Laser soll quasi-kontinuierliche (einige zehntausend ultrakurze Pulse pro Sekunde) kohärente Strahlung im UV- und weichen Röntgenbereich liefern und wäre damit komplementär zu dem von DESY geplanten XFEL, der im harten Röntgenbereich arbeiten und zehn Pulse pro Sekunde liefern wird. Das technische Konzept des BESSY-FEL wird derzeit vom Wissenschaftsrat begutachtet.

Die BESSY GmbH ist Mitglied der Leibniz-Gemeinschaft. Zur Leibniz-Gemeinschaft gehören 80 außeruniversitären Forschungsinstitute und Serviceeinrichtungen für die Forschung. Sie arbeiten nachfrageorientiert und interdisziplinär, sind von überregionaler Bedeutung und werden von Bund und Ländern gemeinsam gefördert.

Ansprechpartner: Dr. Jens Knobloch, Berliner Elektronenspeicherring für Synchrotronstrahlung, (030) 6392-4883, jens.knobloch@bessy.de

Dr. Markus Sauerborn | idw
Weitere Informationen:
http://www.bessy.de/
http://www.desy.de/html/aktuelles/xfel_EU_FEL_TeV.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie