ETH Zürich: Blick in den Quantendot

Quantencomputer sollen Anwendungen ermöglichen, welche die Grenzen von klassischen Computern sprengen. Bevor jedoch Quantencomputer irgendwann in der Zukunft zum Einsatz kommen können, müssen zuerst die physikalischen Eigenschaften ihrer Bausteine geklärt und beherrschbar gemacht werden. ETH-Forscher beschreiben nun eine Methode, wie sie so genannte Quantendots, d.h. mögliche Bauelemente von zukünftigen Quantencomputern, lokal untersuchen können.

In den vergangenen Jahrzehnten hat die Halbleiterindustrie elektronische Bauelemente sehr erfolgreich miniaturisiert und ist in den Nanometerbereich vorgestossen. Bei noch viel kleineren Bauelementen kommt die Quantenmechanik ins Spiel. So genannte Quantencomputer werden dabei eine ganz andere Art und Weise des Rechnens durchführen als die heute bekannten klassischen Computer. Mögliche Bausteine, die für Quantencomputer vorgeschlagen wurden, sind Quantendots, häufig auch „künstliche Atome“ genannt. Die Forschung beschäftigt sich mit den Grundlagen solcher quantenmechanischen Bauelemente und vor allem auch mit der gezielten Kontrolle ihrer physikalischen Eigenschaften.

Bewegung einzelner Elektronen kontrollieren

ETH-Forscher konnten nun in einer Arbeit zeigen, dass in einem Quantendot einzelne Elektronen durch das Bewegen der Spitze eines Rasterkraftmikroskops manipuliert werden können. Die Arbeit ist Ende November im Wissenschaftsmagazin „Physical Review Letters“ erschienen. Dabei haben die Forscher die Potenzial-Landschaft der Quantendots ausgemessen, welche das Wechselwirkungspotenzial zwischen der Spitze und den einzelnen Elektronen abbildet. Ist die Spitze beispielsweise weit weg vom Quantendot, so hat sie wenig Einfluss auf dessen Leitfähigkeit. Kommt nun die Spitze näher, wird die potenzielle Energie der Elektronen im Quantendot erhöht und die Elektronen beginnen – eines nach dem anderen – den Quantendot zu verlassen. Jeder Höchstwert in der Leitfähigkeit, den die Spitze misst, entspricht dabei einem weiteren Elektron, das den Quantendot verlässt. Diese Experimente mit dem Rasterkraftmikroskop geben also lokalen Zugang zu Quantendots. Es hat sich dabei gezeigt, dass sich die Methode für eine sehr kontrollierte Untersuchung verschiedener Geometrien von Quantendots anbietet, d.h. auch von Quantenringen oder gekoppelten Quantensystemen.

Weitere Informationen

Dr. Thomas Ihn
Laboratorium für Festkörperphysik
Telefon +41-1-633 22 80
ihn@phys.ethz.ch

Prof. Klaus Ensslin
Laboratorium für Festkörperphysik
Telefon +41-1-633 22 09
ensslin@phys.ethz.ch

Media Contact

Beatrice Huber idw

Weitere Informationen:

http://www.ethz.ch http://prl.aps.org

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer