Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ETH Zürich: Blick in den Quantendot

02.12.2004


Quantencomputer sollen Anwendungen ermöglichen, welche die Grenzen von klassischen Computern sprengen. Bevor jedoch Quantencomputer irgendwann in der Zukunft zum Einsatz kommen können, müssen zuerst die physikalischen Eigenschaften ihrer Bausteine geklärt und beherrschbar gemacht werden. ETH-Forscher beschreiben nun eine Methode, wie sie so genannte Quantendots, d.h. mögliche Bauelemente von zukünftigen Quantencomputern, lokal untersuchen können.


In den vergangenen Jahrzehnten hat die Halbleiterindustrie elektronische Bauelemente sehr erfolgreich miniaturisiert und ist in den Nanometerbereich vorgestossen. Bei noch viel kleineren Bauelementen kommt die Quantenmechanik ins Spiel. So genannte Quantencomputer werden dabei eine ganz andere Art und Weise des Rechnens durchführen als die heute bekannten klassischen Computer. Mögliche Bausteine, die für Quantencomputer vorgeschlagen wurden, sind Quantendots, häufig auch "künstliche Atome" genannt. Die Forschung beschäftigt sich mit den Grundlagen solcher quantenmechanischen Bauelemente und vor allem auch mit der gezielten Kontrolle ihrer physikalischen Eigenschaften.

Bewegung einzelner Elektronen kontrollieren


ETH-Forscher konnten nun in einer Arbeit zeigen, dass in einem Quantendot einzelne Elektronen durch das Bewegen der Spitze eines Rasterkraftmikroskops manipuliert werden können. Die Arbeit ist Ende November im Wissenschaftsmagazin "Physical Review Letters" erschienen. Dabei haben die Forscher die Potenzial-Landschaft der Quantendots ausgemessen, welche das Wechselwirkungspotenzial zwischen der Spitze und den einzelnen Elektronen abbildet. Ist die Spitze beispielsweise weit weg vom Quantendot, so hat sie wenig Einfluss auf dessen Leitfähigkeit. Kommt nun die Spitze näher, wird die potenzielle Energie der Elektronen im Quantendot erhöht und die Elektronen beginnen - eines nach dem anderen - den Quantendot zu verlassen. Jeder Höchstwert in der Leitfähigkeit, den die Spitze misst, entspricht dabei einem weiteren Elektron, das den Quantendot verlässt. Diese Experimente mit dem Rasterkraftmikroskop geben also lokalen Zugang zu Quantendots. Es hat sich dabei gezeigt, dass sich die Methode für eine sehr kontrollierte Untersuchung verschiedener Geometrien von Quantendots anbietet, d.h. auch von Quantenringen oder gekoppelten Quantensystemen.

Weitere Informationen

Dr. Thomas Ihn
Laboratorium für Festkörperphysik
Telefon +41-1-633 22 80
ihn@phys.ethz.ch

Prof. Klaus Ensslin
Laboratorium für Festkörperphysik
Telefon +41-1-633 22 09
ensslin@phys.ethz.ch

Beatrice Huber | idw
Weitere Informationen:
http://www.ethz.ch
http://prl.aps.org

Weitere Berichte zu: Bauelement Leitfähigkeit Quantencomputer Quantendot

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht ALMA beginnt Beobachtung der Sonne
18.01.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Magnetische Kraft von einzelnen Antiprotonen mit höchster Genauigkeit bestimmt
18.01.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik